1,431 research outputs found

    Factors influencing community nursing roles and health service provision in rural areas : a review of literature

    Get PDF
    Aims: This review sought to better understand the issues and challenges experienced by community nurses working in rural areas and how these factors shape their role. Methods: Databases were searched to identify relevant studies, published between 1990 and 2015, that focussed on issues and challenges experienced by rural community nurses. Generic and grey literature relating to the subject was also searched. The search was systematically conducted multiple times to assure accuracy. Results: A total of 14 articles met the inclusion criteria. This critical review identified common issues impacting community nursing and included role definition, organisational change, human resource, workplace and geographic challenges. Conclusion: Community nurses are flexible, autonomous, able to adapt care to the service delivery setting, and have a diversity of knowledge and skills. Considerably more research is essential to identify factors that impact rural community nursing practice. In addition, greater advocacy is required to develop the role. © 2016 Informa UK Limited, trading as Taylor & Francis Group

    A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology

    Get PDF
    The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named &lt;i&gt;TbOrg1&lt;/i&gt;). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (&lt;i&gt;TbOrg2&lt;/i&gt;). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits

    IKKγ mimetic peptides block the resistance to apoptosis associated with KSHV infection.

    Get PDF
    Primary effusion lymphoma (PEL) is a lymphogenic disorder associated with KSHV infection. Key to the survival and proliferation of PEL is the canonical NF-kB pathway that becomes constitutively activated following overexpression of the viral oncoprotein ks-vFLIP. This arises from its capacity to form a complex with the modulatory subunit of the IKK kinase, IKKγ (or NEMO) resulting in the overproduction of proteins that promote cellular survival and prevent apoptosis; both of which are important drivers of tumourigenesis. Using a combination of cell based and biophysical assays together with structural techniques, we show that the observed resistance to cell death is largely independent of autophagy or major death receptor signalling pathways and demonstrate that direct targeting of the ks-vFLIP-IKKγ interaction both in cells and in vitro can be achieved using IKKγ mimetic peptides. Our results further reveal that these peptides not only induce cell killing, but potently sensitise PEL to the pro-apoptotic agents tumour necrosis factor alpha and etoposide and are the first to confirm ks-vFLIP as a tractable target for the treatment of PEL and related disorders.IMPORTANCE KSHV vFLIP (ks-vFLIP) has been shown to have a crucial role in cellular transformation where it is vital for the survival and proliferation of primary effusion lymphoma (PEL), an aggressive malignancy associated with infection that is resistant to the majority of chemotherapeutic drugs. It operates via subversion of the canonical NF-κB pathway that requires a physical interaction between ks-vFLIP and the IKK kinase modulatory subunit IKKγ. Whilst this interaction has been directly linked to protection against apoptosis, it is unclear whether the suppression of other cell death pathways implicated in ks-vFLIP pathogenesis are additional contributors. We demonstrate that the interaction between ks-vFLIP and IKKγ is pivotal in conferring resistance to apoptosis. Additionally, we show that the ks-vFLIP-IKKγ complex can be disrupted using peptides leading to direct killing and the sensitisation of PEL cells to pro-apoptotic agents. Our studies thus provide a framework for future therapeutic interventions

    Stability and error analysis for a diffuse interface approach to an advection-diffusion equation on a moving surface

    Get PDF
    In this paper we analyze a fully discrete numerical scheme for solving a parabolic PDE on a moving surface. The method is based on a diffuse interface approach that involves a level set description of the moving surface. Under suitable conditions on the spatial grid size, the time step and the interface width we obtain stability and error bounds with respect to natural norms. Furthermore, we present test calculations that confirm our analysis

    Echinacea purpurea and osteopathic manipulative treatment in children with recurrent otitis media: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recurrent otitis media is a common problem in young children. Echinacea and osteopathic manipulative treatment have been proposed as preventive measures, but have been inadequately studied. This study was designed to assess the efficacy of <it>Echinacea purpurea </it>and/or osteopathic manipulative treatment (OMT) for prevention of acute otitis media in otitis-prone children.</p> <p>Methods</p> <p>A randomized, placebo-controlled, two-by-two factorial trial with 6-month follow-up, conducted 1999 – 2002 in Tucson, Arizona. Patients were aged 12–60 months with recurrent otitis media, defined as three or more separate episodes of acute otitis media within six months, or at least four episodes in one year. Ninety children (44% white non-Hispanic, 39% Hispanic, 57% male) were enrolled, of which 84 had follow-up for at least 3 months. Children were randomly assigned to one of four protocol groups: double placebo, echinacea plus sham OMT, true OMT (including cranial manipulation) plus placebo echinacea, or true echinacea plus OMT. An alcohol extract of <it>Echinacea purpurea </it>roots and seeds (or placebo) was administered for 10 days at the first sign of each common cold. Five OMT visits (or sham treatments) were offered over 3 months.</p> <p>Results</p> <p>No interaction was found between echinacea and OMT. Echinacea was associated with a borderline increased risk of having at least one episode of acute otitis media during 6-month follow-up compared to placebo (65% versus 41%; relative risk, 1.59, 95% CI 1.04, 2.42). OMT did not significantly affect risk compared to sham (44% versus 61%; relative risk, 0.72, 95% CI 0.48, 1.10).</p> <p>Conclusion</p> <p>In otitis-prone young children, treating colds with this form of echinacea does not decrease the risk of acute otitis media, and may in fact increase risk. A regimen of up to five osteopathic manipulative treatments does not significantly decrease the risk of acute otitis media.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NCT00010465</p

    Estimating the Total Number of Susceptibility Variants Underlying Complex Diseases from Genome-Wide Association Studies

    Get PDF
    Recently genome-wide association studies (GWAS) have identified numerous susceptibility variants for complex diseases. In this study we proposed several approaches to estimate the total number of variants underlying these diseases. We assume that the variance explained by genetic markers (Vg) follow an exponential distribution, which is justified by previous studies on theories of adaptation. Our aim is to fit the observed distribution of Vg from GWAS to its theoretical distribution. The number of variants is obtained by the heritability divided by the estimated mean of the exponential distribution. In practice, due to limited sample sizes, there is insufficient power to detect variants with small effects. Therefore the power was taken into account in fitting. Besides considering the most significant variants, we also tried to relax the significance threshold, allowing more markers to be fitted. The effects of false positive variants were removed by considering the local false discovery rates. In addition, we developed an alternative approach by directly fitting the z-statistics from GWAS to its theoretical distribution. In all cases, the “winner's curse” effect was corrected analytically. Confidence intervals were also derived. Simulations were performed to compare and verify the performance of different estimators (which incorporates various means of winner's curse correction) and the coverage of the proposed analytic confidence intervals. Our methodology only requires summary statistics and is able to handle both binary and continuous traits. Finally we applied the methods to a few real disease examples (lipid traits, type 2 diabetes and Crohn's disease) and estimated that hundreds to nearly a thousand variants underlie these traits
    corecore