898 research outputs found

    Nucleon-nucleon momentum correlation function for light nuclei

    Get PDF
    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in Nucl. Phys.

    Neutron/proton ratio of nucleon emissions as a probe of neutron skin

    Full text link
    The dependence between neutron-to-proton yield ratio (RnpR_{np}) and neutron skin thickness (δnp\delta_{np}) in neutron-rich projectile induced reactions is investigated within the framework of the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model. The density distribution of the Droplet model is embedded in the initialization of the neutron and proton densities in the present IQMD model. By adjusting the diffuseness parameter of neutron density in the Droplet model for the projectile, the relationship between the neutron skin thickness and the corresponding RnpR_{np} in the collisions is obtained. The results show strong linear correlation between RnpR_{np} and δnp\delta_{np} for neutron-rich Ca and Ni isotopes. It is suggested that RnpR_{np} may be used as an experimental observable to extract δnp\delta_{np} for neutron-rich nuclei, which is very significant to the study of the nuclear structure of exotic nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.

    On the String Consensus Problem and the Manhattan Sequence Consensus Problem

    Full text link
    In the Manhattan Sequence Consensus problem (MSC problem) we are given kk integer sequences, each of length ll, and we are to find an integer sequence xx of length ll (called a consensus sequence), such that the maximum Manhattan distance of xx from each of the input sequences is minimized. For binary sequences Manhattan distance coincides with Hamming distance, hence in this case the string consensus problem (also called string center problem or closest string problem) is a special case of MSC. Our main result is a practically efficient O(l)O(l)-time algorithm solving MSC for k5k\le 5 sequences. Practicality of our algorithms has been verified experimentally. It improves upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus problem for k=5k=5 binary strings. Similarly as in Amir's algorithm we use a column-based framework. We replace the implied general integer linear programming by its easy special cases, due to combinatorial properties of the MSC for k5k\le 5. We also show that for a general parameter kk any instance can be reduced in linear time to a kernel of size k!k!, so the problem is fixed-parameter tractable. Nevertheless, for k4k\ge 4 this is still too large for any naive solution to be feasible in practice.Comment: accepted to SPIRE 201

    Dynamic surface scaling behavior of isotropic Heisenberg ferromagnets

    Full text link
    The effects of free surfaces on the dynamic critical behavior of isotropic Heisenberg ferromagnets are studied via phenomenological scaling theory, field-theoretic renormalization group tools, and high-precision computer simulations. An appropriate semi-infinite extension of the stochastic model J is constructed, the boundary terms of the associated dynamic field theory are identified, its renormalization in d <= 6 dimensions is clarified, and the boundary conditions it satisfies are given. Scaling laws are derived which relate the critical indices of the dynamic and static infrared singularities of surface quantities to familiar static bulk and surface exponents. Accurate computer-simulation data are presented for the dynamic surface structure factor; these are in conformity with the predicted scaling behavior and could be checked by appropriate scattering experiments.Comment: 9 pages, 2 figure

    Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Get PDF
    Anisotropic flows (v1v_1, v2v_2 and v4v_4) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v1v_1) and elliptic flow (v2v_2) are demonstrated for light nuclear clusters. Moreover, the ratios of v4/v22v_4/v_2^2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the proceeding issue in Nuclear Physics

    Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations

    Get PDF
    Rising atmospheric carbon dioxide (CO2) may stimulate the proliferation of cyanobacteria. To investigate the possible physiological responses of cyanobacteria to elevated CO2 at different nutrient levels, Microcystis aeruginosa were exposed to different concentrations of CO2 (400, 1100, and 2200 ppm) under two nutrient regimes (i.e., in nutrient-rich and nutrient-poor media). The results indicated that M. aeruginosa differed in its responses to elevated atmospheric CO2 at different nutrient levels. The light utilization efficiency and photoprotection of photosystem II were improved by elevated CO2, particularly when cells were supplied with abundant nutrients. In nutrient-poor media, both total organic carbon and the polysaccharide/protein ratio of the extracellular polymeric substance increased with elevated CO2, accompanied by high cellular carbon/nitrogen ratios. Besides, cells growing with fewer nutrients were more prone to suffer intracellular acidification with elevated CO2 than those growing with abundant nutrients. Nonetheless, alkaline phosphate activity of cyanobacteria was improved by high CO2, provided that reduced pH was in the optimum range for alkaline phosphate activity. Nitrate reductase activity was inhibited by elevated CO2 regardless of nutrient levels, leading to a reduced nitrate uptake. These changes indicate that the biogeochemical cycling of nutrients would be affected by higher atmospheric CO2 conditions. Overall, cyanobacteria in eutrophic waters may benefit more than in oligotrophic waters from rising atmospheric CO2 concentrations, and evaluations of the influence of rising atmospheric CO2 on algae should account for the nutrient level of the ecosystem

    An Experimental Study of the Dynamic Split Tension Properties of Reinforced Concrete

    No full text
    Dynamic split tensile tests of reinforced concrete were carried out using the split Hopkinson pressure bar experimental technique to determine the failure modes of reinforced concrete at different strain rates, and the effect of reinforcement ratio and reinforcement layouts on the dynamic performance. The specimens with nine reinforcement ratios were used in the tests. Experimental results show that the tensile strength of reinforced concrete exhibits a critical strain rate, beyond which larger increases in dynamic strength of specimens occur. The dynamic split tension strength of reinforced concrete is demonstrated to be greater than the plain concrete with the same strength grade over the range of tested strain rate. The results also indicate that the dynamic split tension strength of specimens enhances with the increase of reinforcement ratio. These findings are instrumental to guide the structural design of reinforced concrete in engineering constructions

    Thermal Bremsstrahlung photons probing the nuclear caloric curve

    Get PDF
    Hard-photon (Eγ>_{\gamma}> 30 MeV) emission from second-chance nucleon-nucleon Bremsstrahlung collisions in intermediate energy heavy-ion reactions is studied employing a realistic thermal model. Photon spectra and yields measured in several nucleus-nucleus reactions are consistent with an emission from hot nuclear systems with temperatures TT\approx 4 - 7 MeV. The corresponding caloric curve in the region of excitation energies ϵ\epsilon^\star\approx 3{\it A} - 8{\it A} MeV shows lower values of TT than those expected for a Fermi fluid.Comment: 13 pages, 3 figures. To appear in Physics Letters

    Effect of Intensity Modulator Extinction on Practical Quantum Key Distribution System

    Full text link
    We study how the imperfection of intensity modulator effects on the security of a practical quantum key distribution system. The extinction ratio of the realistic intensity modulator is considered in our security analysis. We show that the secret key rate increases, under the practical assumption that the indeterminable noise introduced by the imperfect intensity modulator can not be controlled by the eavesdropper.Comment: 6 pages, 5 figures. EPJD accepte
    corecore