1,147 research outputs found

    Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process

    Full text link
    We report the successful fabrication of single-filament composite MgB2/SUS ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT) process, by swaging and cold rolling only. The remarkable transport critical current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T = 20 K were observed at self-field, for the non-sintered composite MgB2/SUS ribbon. In addition, the persistent current density Jp values, that were estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K, and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS ribbon, at H = 0 G.Comment: 10 pages, 4 figure

    The genetic basis of host preference and resting behavior in the major African malaria vector, Anopheles arabiensis

    Get PDF
    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability”for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals. Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations

    Diffusive limit for a quantum linear Boltzmann dynamics

    Full text link
    In this article, I study the diffusive behavior for a quantum test particle interacting with a dilute background gas. The model I begin with is a reduced picture for the test particle dynamics given by a quantum linear Boltzmann equation in which the gas particle scattering is assumed to occur through a hard-sphere interaction. The state of the particle is represented by a density matrix that evolves according to a translation-covariant Lindblad equation. The main result is a proof that the particle's position distribution converges to a Gaussian under diffusive rescaling.Comment: 51 pages. I have restructured Sections 2-4 from the previous version and corrected an error in the proof of Proposition 7.

    Enhancement of near-cloaking. Part II: the Helmholtz equation

    Full text link
    The aim of this paper is to extend the method of improving cloaking structures in the conductivity to scattering problems. We construct very effective near-cloaking structures for the scattering problem at a fixed frequency. These new structures are, before using the transformation optics, layered structures and are designed so that their first scattering coefficients vanish. Inside the cloaking region, any target has near-zero scattering cross section for a band of frequencies. We analytically show that our new construction significantly enhances the cloaking effect for the Helmholtz equation.Comment: 16pages, 12 fugure

    Dynamic characteristics of flow meters for fuel consumption measurement in ships

    Get PDF
    The dynamic characteristics of various flow meters for fuel consumption measurement aboard shipswere evaluated. The flow rate was measured using the Korea Research Institute of Standards and Science (KRISS) oil flow standard system using K-oil(density : 0.804 g/cm3, viscosity : 3.679 cSt), which has similar fluid properties as diesel oil. The flow meters were tested in a test bed that simulated the vibration conditions in ships. The vibration conditions were established in accordance to vibration standard IEC 60068-2-6 as follows: a±0.7g acceleration and 30 Hz frequency. The K-factors (mL/pulse) of various flow meters (PD meter, turbine flow meter, Coriolis flow meter, and ultrasonic flow meter) were obtained for various flow rates (60 L/h ~ 300 L/h). The PD meter, Coriolis flow meter, and ultrasonic flow meter were found to have almost constant Kfactors according to the flow rates. However, the K-factor of the turbine flow meter was reduced at a low flow rate owing to bearing friction in the turbine blade. The flow rate errors of the PD meter, Coriolis flow meter, and ultrasonic flow meter were found to be under ±0.5 % with and without vibration. However, the flow rate error of the turbine flow meter was approximately -4.3 % at a low flow rate (60 L/h) owing to the friction effect. The Coriolis flow meter had the lowest flow rate error (< 0.1%) according to the flow rate. The vibration influenced the flow rate error of the Coriolis flow meter at high flow rates owing to its measuring principle. However, the difference in flow rate errors was a negligible value (0.05 %) with and without vibration. Therefore, we confirmed that the PD meter, turbine meter, Coriolis flow meter and ultrasonic flow meter could be used for measuring flow rates in ships with a ±0.5 % flow rate error.Papers presented at the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Portoroz, Slovenia on 17-19 July 2017 .International centre for heat and mass transfer.American society of thermal and fluids engineers

    Colorectal tumour simulation using agent based modelling and high performance computing

    Get PDF
    450,000 European citizens are diagnosed every year with colorectal cancer (CRC) and more than 230,000 succumb to the disease annually. For this reason, significant resources are dedicated to the identification of more effective therapies for this disease. However, classical assessment techniques for these treatments are slow and costly. Consequently, systems biology researchers at the Royal College of Surgeons in Ireland (RCSI) are developing computational agent-based models simulating tumour growth and treatment responses with the objective of speeding up the therapeutic development process while, at the same time, producing a tool for adapting treatments to patient-specific characteristics. However, the model complexity and the high number of agents to be simulated require a thorough optimisation of the process in order to execute realistic simulations of tumour growth on currently available platforms. We propose to apply the most advanced HPC techniques to achieve the efficient and realistic simulation of a virtual tissue model that mimics tumour growth or regression in space and time. These techniques combine extensions of the previously developed agent-based simulation software platform (FLAME) with autotuning capabilities and optimisation strategies for the current tumour model. Development of such a platform could advance the development of novel therapeutic approaches for the treatment of CRC which can also be applied other solid tumours.This work has been partially supported by MICINN-Spain under contract TIN2011- 28689-C02-01 and TIN2014-53234-C2-1-R and GenCat-DIUiE(GRR) 2014-SGR-576. This research was also funded by the European Community’s Framework Programme Seven (FP7) Programme under contract No. 278981 680 AngioPredict and supported by the DJEI/DES/SFI/HEA Irish Centre for High- End Computing (ICHEC).Peer ReviewedPostprint (author's final draft

    Apparatus for a Search for T-violating Muon Polarization in Stopped-Kaon Decays

    Full text link
    The detector built at KEK to search for T-violating transverse muon polarization in K+ --> pi0 mu+ nu (Kmu3) decay of stopped kaons is described. Sensitivity to the transverse polarization component is obtained from reconstruction of the decay plane by tracking the mu+ through a toroidal spectrometer and detecting the pi0 in a segmented CsI(Tl) photon calorimeter. The muon polarization was obtained from the decay positron asymmetry of muons stopped in a polarimeter. The detector included features which minimized systematic errors while maintaining high acceptance.Comment: 56 pages, 30 figures, submitted to NI

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/
    corecore