
Accepted Manuscript

Colorectal tumour simulation using agent based modelling and high
performance computing

Guiyeom Kang, Claudio Márquez, Ana Barat, Annette T. Byrne,
Jochen H.M. Prehn, Joan Sorribes, Eduardo César

PII: S0167-739X(16)30072-3
DOI: http://dx.doi.org/10.1016/j.future.2016.03.026
Reference: FUTURE 3002

To appear in: Future Generation Computer Systems

Received date: 31 July 2015
Revised date: 15 December 2015
Accepted date: 28 March 2016

Please cite this article as: G. Kang, C. Márquez, A. Barat, A.T. Byrne, J.H.M. Prehn, J.
Sorribes, E. César, Colorectal tumour simulation using agent based modelling and high
performance computing, Future Generation Computer Systems (2016),
http://dx.doi.org/10.1016/j.future.2016.03.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2016.03.026

Colorectal)Tumour)Simulation)using)Agent)Based)Modelling)and)High)Performance)
Computing)

)
•! Colorectal)tumour)modelling)and)simulation)
•! Parallel)agent)based)modelling)and)simulation)(ABMS))
•! Load)balancing)of)parallel)ABMS)using)graph)partitioning)
•! Extending)FLAME)with)agent)migration,)output)message)filtering)and)dynamic)

load)balancing)
)

Highlights (for review)

Colorectal Tumour Simulation using Agent Based
Modelling and High Performance Computing

Guiyeom Kanga, Claudio Márquezb, Ana Barata, Annette T. Byrnea, Jochen
H.M. Prehna, Joan Sorribesc, Eduardo Césarc,∗

aCentre for Systems Medicine and Physiology & Medical Physics Department, Royal
College of Surgeons in Ireland, Dublin 2, Ireland

bComputer Applications in Science & Engineering, Barcelona Supercomputing Center,
Barcelona, Spain

cComputer Architecture and Operating Systems Department, Universitat Autnoma de
Barcelona, Barcelona, Spain

Abstract

450,000 European citizens are diagnosed every year with colorectal cancer (CRC)

and more than 230,000 succumb to the disease annually. For this reason, signif-

icant resources are dedicated to the identification of more effective therapies for

this disease. However, classical assessment techniques for these treatments are

slow and costly. Consequently, systems biology researchers at the Royal College

of Surgeons in Ireland (RCSI) are developing computational agent-based models

simulating tumour growth and treatment responses with the objective of speed-

ing up the therapeutic development process while, at the same time, producing

a tool for adapting treatments to patient-specific characteristics. However, the

model complexity and the high number of agents to be simulated require a

thorough optimisation of the process in order to execute realistic simulations

of tumour growth on currently available platforms. We propose to apply the

most advanced HPC techniques to achieve the efficient and realistic simulation

of a virtual tissue model that mimics tumour growth or regression in space and

time. These techniques combine extensions of the previously developed agent-

∗Corresponding author
Email addresses: guiyeomkang@rcsi.ie (Guiyeom Kang), claudio.marquez@bsc.es

(Claudio Márquez), anabarat@rcsi.ie (Ana Barat), annettebyrne@rcsi.ie (Annette T.
Byrne), JPrehn@rcsi.ie (Jochen H.M. Prehn), Joan.Sorribes@uab.cat (Joan Sorribes),
Eduardo.Cesar@uab.cat (Eduardo César)

Preprint submitted to Journal of LATEX Templates December 15, 2015

*Manuscript
Click here to view linked References

based simulation software platform (FLAME) with autotuning capabilities and

optimisation strategies for the current tumour model. Development of such a

platform could advance the development of novel therapeutic approaches for the

treatment of CRC which can also be applied to other solid tumours.

Keywords: Colorectal Cancer (CRC), Agent Based Modelling and Simulation

(ABMS), High Performance Computing (HPC), Load Balancing

1. Introduction

Colorectal cancer (CRC) is common cancer in both males and females and

is the third leading cause of cancer related mortality in both sexes [1]. It is

a complex cellular disease [2] caused by sequential genetic mutations which

trigger abnormal tumour cell proliferation rates and changes in metabolism,5

immunogenicity and cell death susceptibility. Moreover, tumour angiogenesis,

i.e., the formation of new blood vessels, as well as metastasis leads to exten-

sive disease dissemination. While a large amount of tumour related data is

available at various temporal and spatial scales, data are not always able to

explain the underlying diseade mechanisms, predict patient outcome, or iden-10

tify patients who could benefit from targeted anti-cancer therapies. With the

complex, multiscale process of tumour growth and dissemination continuously

being investigated, computational modelling plays a powerful tool in helping to

understand complex tumour biology mechanisms and responses to therapy.

Computational modelling of tumour growth can be implemented at different15

levels, i.e., molecular, microscopic, or macroscopic scale [3]. In recent studies

it has been shown that computational modelling at the protein pathway and

network scale may provide insights into cell processes relevant for responses to

cancer therapy such as cell death activation, and may be used in the clinic to

predict responses to chemotherapy [4, 5, 6]. Although these models advance20

our understanding of biological pathways and enable predictions, there are still

many areas that require further exploitation through computational modelling.

Multiscale computational models incorporating hallmarks of cancer at differ-

2

ent scales in both space and time may provide a better understanding of tumour

growth and may more accurately predict responses to therapy or suggest novel25

mechanistic hypotheses. Multiscale modelling has already been widely used for

the study of tumour growth and response to therapy, and is though to provide

more realistic tumour growth models [7, 8, 9].

However, multiscale modelling faces significant challenges if such models

shall accurately predict tumour growth and therapeutic outcome. Since mul-30

tiscale models include more biological processes than single scale models con-

taining an element of multiscale models, more parameters and interactions are

required that correspond to molecular, physiological and clinical data.

This leads to very complex models, resulting in a high computational burden

with excessive usage of computational resources. Herein, agent-based modelling35

and simulation (ABMS) is chosen to simulate tumour growth and development.

ABMS is one of the most powerful simulation modelling techniques and has the

capacity to provide significant benefits for studying tumour biology process, and

providing a possible solution for implementing more realistic tumour growth

models. For example, in the study by Engelberg et al. [10], an agent-based40

analogue of in vitro tumour growth was presented using in silico axioms whereby

simulation results were in close agreement with experimental data.

Nevertheless, simulating a complex ABMS system for realistic cases is only

feasible in a reasonable time if the simulation is executed in parallel on a High

Performance Computing (HPC) system. For example, Christley et al [11] pre-45

viously described implementation of an agent-based cellular model for 3D epi-

dermal development on GPUs, which accelerates the execution of the model up

to 18x. However, in HPC ABMS simulations, a weak distribution of the agents

workload may introduce uneven CPU computing and network communication

overhead that delays the simulation and may propagate across all processes.50

With the purpose of mitigating this problem, automatic mechanisms for dy-

namically adjusting the computation and/or communication load are needed.

According to the execution of the tuning decisions, the load balancing strate-

gies for HPC applications can be developed using centralised/hierarchical and

3

decentralised approaches [12]. However, the centralised/hierarchical approaches55

report a high computational cost and scalability problems.

For this reason, we have developed a distributed Graph-based Dynamic Load

Balancing (DLB) strategy that allows automatic and dynamic tuning decisions

in terms of computation/communication workload. DLB tunes the global sim-

ulation workload migrating groups of agents among the processes using a Hy-60

pergraph perspective. This Hypergraph is partitioned using the Zoltan Parallel

Hypergraph partitioner method (PHG) [13]. Moreover, in order to reduce agent

communications, DLB uses message filtering routines to send message groups

to specified recipient processes in a simple 3D grid-based structure.

We have implemented this load balancing approach on the framework Flexi-65

ble Large-scale Agent Modelling Environment (FLAME), achieving a significant

improvement in application performance. In order to integrate this DBL ap-

proach in FLAME, the framework was extended to allow for migration of agents,

message filtering, collation of performance measurements, building the Hyper-

graph representation of the simulated system, and integrating Zoltan libraries.70

This document is arranged in six sections. Section 2 presents the description

of the cell model for simulating CRC tumours. Section 3 introduces a survey of

ABMS frameworks, a more detailed description of FLAME, and details relating

to the implementation of the CRC tumour cell model using this framework.

Section 4 robustly discusses optimisations done to the implemented model, ex-75

tensions implemented in FLAME and, in particular, the DLB method based on

Hypergraph partitioning. Section 5 presents the CRC model validation and per-

formance improvements obtained from the different optimisations implemented

in FLAME. Finally, Section 6 presents our conclusion.

2. Tumour Cell Model80

The tumour growth model implemented in this paper includes the basic bi-

ological properties of tumour cells (TC) such as cell growth, proliferation, and

death located within a vascular network and further considers dependence on

4

nutrients (oxygen). Two tumour growth stages may be considered; the first

is defined as avascular growth when tumours depend on simple diffusion for85

nutrient supply. The second stage involves vascular growth, a multistep phys-

iological and biological process ‘angiogenesis’ which is initiated when tumour

cells become increasingly hypoxic and, in response, secrete angiogenic factors

such as vascular endothelial growth factor (VEGF). These diffuse and stimulate

the existing vessels to form new sprouts, which migrate and connect to other90

sprouts or to the existing vascular network, forming new blood vessels. This

results in an abnormal tumour vasculature which is leaky and tortuous.

The model developed here couples tumour growth with tumour angiogenesis.

It is based on an extension of the vascular network model originally presented

by Bartha and Rieger [14]. Each TC undergoes a fundamental cell cycle, as95

shown in Figure 1. The cell cycle is a set of events, including cell growth (G1)

and division (M), occurring in order. In the model, each cell has an internal

timer, and progresses on tick through the cycle at each iteration unless it is

inhibited for cycling. Since cell division is dependent on the O2, the oxygen

concentration is also checked during the cell cycle. When the cell has divided,100

a daughter cell inherits all properties of the parent cell. A new blood vessel

is branched from existing vessels where the local VEGF concentration exceeds

a threshold. A threshold VEGF concentration prompts tumor endothelial cells

(TEC) to proliferate, and the existing vessel stalk gradually forms new branches.

A TEC can be divided either at a tip or at the wall of a vessel branch.105

For the model simulations, the oxygen concentration O2(r) is implemented

by a sum of the source strength of a vessel segment within a maximum oxygen

diffusion radius, RO2 . This is a modified version of the equation used in [14]:

O2(r) =
∑

all TECs∈RO2

leakfactor(RO2 − dTEC TC)r2
TEC

(nmin TECRO2)r2
TC

(1)

where dTEC TC is the distance between TC and TEC, nmin TEC is the

optimum number of TECs, in which the TC is well oxygenated, and rTEC and110

rTC are the radii of the TC and TEC respectively. The contribution of each

5

M

G2

G1

S
G0

Add new cell

(Quiescence)

(DNA synthesis)

(Growth)

(Growth,

Preparation

for cell

division) (Cell division)

Figure 1: Schematic diagram of the simplified cell cycle. M = Mitosis, G1 = Gap 1, G0 =

Gap 0 / Resting, S = Synthesis, G2 = Gap 2.

TEC is affected by leakfactor. A leakfactor < 1 indicates that the TEC is a part

of a defective vessel, which is consequently poorly circulated.

Similarly, VEGF concentration GF (r) is implemented using a sum of the

source strength of a TC within a maximum VEGF diffusion radius, RV EGF .115

This is also a modified version of the equation used in [14]:

GF (r) =
∑

all TCs∈RO2

PrdV EGF (0−1)(RV EGF − dTEC TC)
nmin TCRV EGF

(2)

where nmin TC is the optimum number of TCs, in which the TEC can be

divided. GF (r) also depends on a production factor PrdV EGF (0−1) which char-

acterises the ability of each TC to produce VEGF.

Figure 2 provides a flow chart of the model. The model specifies the initial120

locations of TCs and TECs in a 3D computational domain. The parameter

values used for TC proliferation and vessel generation and collapse are also

initialised. The model then computes oxygen concentration which affects the

cell cycle. VEGF concentration is calculated after checking for cell division,

death and movement. This induces tumour angiogenesis which initiates vessel125

growth. Lastly, vessels are checked for collapse. The entire process is repeated

for a fixed duration of time.

6

 Cellular

Set up the initial location of different cell types

& apply inputs to the model

Calculate oxygen

concentration

Calculate cell cycle

Check for cell

division / death

Check for

cell movement

Check for sprout

Initiation & migration

 Tumour cell Endothelial cell
 Diffusible

Check for vessel

degeneration & collapse

Calculate VEGF

Tumour

Angiogenesis

Figure 2: Flow chart of the multiscale model for tumour growth and development, illustrating

the temporal sequence of the simulation.

3. Agent Based Modelling and Simulation

Agent based modelling and simulation (ABMS) is a type of computational

modelling that simulates the actions and interactions of autonomous agents130

(both individual or collective entities such as organisations or groups) with the

goal of assessing their effects on a system as a whole. ABMS belongs to a

category of models known as discrete event simulations, which run with some set

of starting conditions over some period of time, allowing the programmed agents

to carry out their actions until some specified stopping criterion is satisfied,135

usually either a certain amount of time or a specified system state.

An agent is an autonomous, dynamic rule-based entity within a defined

environment. The behaviour of the agents is encoded in algorithms, which

may go from simple deterministic rules to sophisticated algorithms including

learning and adaptive strategies. Agents determine the dynamics of the system140

as a whole by interacting with each other. Being able to communicate with

each other, agents can influence the behaviour of other agents creating complex

7

interactions within a system.

Depending on the complexity of the model and the number of agents par-

ticipating in the simulation, an ABMS application may consume a significant145

amount of computational resources. Consequently, in many cases simulations

can take advantage of parallel techniques and HPC hardware. In addition, paral-

lelising this kind of systems is usually straight forward because of the underlying

autonomous behaviour of agents.

The CRC agent based model presented in this work is an ideal candidate150

for parallel implementation because of its complexity and the large amount of

agents involved in a simulation. For this reason, we introduce in this section a

survey of available parallel ABMS frameworks and, specially, a description of

FLAME, which is the framework that has been used for developing our model.

Finally, we also discuss the implementation in FLAME of the tumour cell model155

described in Section 2.

3.1. Parallel ABMS

Currently, several ABMS general frameworks for generating parallel simula-

tions on HPC environments can be found.

Ecolab [15] is an object-oriented environment written in C++. Essentially,160

the user writes a class representing the entire model being simulated and in-

stantiates an object, the variables and methods of this object are exposed to

a Tool Command Language (TCL) interpreter which is used for running the

experiments. When run in parallel, a TCL interpreter is launched in each used

processor, facilitating the execution of any TCL command by use of the the165

parallel command, or declaring a method as parallel. Communication be-

tween processors can be implemented using Message Passing Interface (MPI)

calls or a special wrapper class.

Repast HPC [16] was released in 2012, and written in C++ using MPI for

parallel simulations. Agent types are implemented as C++ classes that are170

associated to contexts, which can be defined as a population of agents, and

projections, which define the structure of the population contained in a context.

8

When run in parallel, each process is responsible for executing a set of local

agents. Interactions between agents assigned to different processes are managed

by copying and synchronising the interacting agents in the involved processes.175

D-Mason [17] is a framework written in Java, based on a master/worker

paradigm. D-Mason uses idle desktop workstations subdividing the workload

among these heterogeneous machines. Communication between agents is ac-

complished by sharing channels between workers that share information. In

addition, recent improvements of D-Mason provide a load balancing schema180

based on executing multiple workers on the most powerful nodes.

Pandora [18] is a framework developed in C++, OpenMP and MPI. Agents

are implemented as C++ or Python classes as well as the environment the agents

live in (called world). Parallelisation is achieved by distributing different parts

of the world among the nodes participating in the simulation. Then, each node185

distributes the simulation of its assigned portion among the node cores using

OpenMP. The frontiers of each world partition are automatically communicated

to the neighbouring nodes in each simulation step using MPI.

Finally, FLAME [19] allows the production of automatic parallelisable code.

FLAME is written in C, it uses MPI for communication, and agents are specified190

using an extension of XML plus C. Given that this is the framework used in

this work, a more detailed description is given in the next subsection.

3.2. FLAME

FLAME [19] was developed at the University of Sheffield in collaboration

with the Science and Technology Facilities Council (STFC). FLAME has been195

used to solve problems involving multiple domains such as economical, medical,

biological and social sciences. This framework facilitates the writing of sev-

eral agent models using a common simulation environment, and then perform

simulations on different parallel architectures, including GPUs.

FLAME is not a simulator in itself, but a tool able to generate the necessary200

source code for the simulation. It automatically generates the simulation code

in C through a template engine, which uses a set of template files (shown in

9

Table 1) and the user-provided specification to generate the simulation code.

Table 1: FLAME templates description.

Template Description

low primes.tmpl prime numbers storage.

main.tmpl main file of the simulator code.

memory.tmpl agent’s routines and structures.

messageboards.tmpl structures and routines for message boards.

Makefile.tmpl simulation code Makefile.

partitioning.tmpl partition methods (R.Robin and Geometric).

rules.tmpl input filtering rules

timing.tmpl timing functions.

xml.tmpl xml reading and writing functions.

The model specification is described by two types of files, XMML (X-Machine

Markup Language) files, which is a dialect of XML, and the implementation of205

the agent functions contained in C files. This approach is similar to the one

followed by Repast and Pandora, but in this case, instead of using an object

oriented language, agents state and data are specified using XMML. Figure 3

schematically shows the inputs provided to FLAME and the output produced

by this framework.210

Figure 3: FLAME basic diagram.

The functionality of FLAME is based on finite state machines called X-

machines, which consists of a finite set of states, transitions between states,

10

Figure 4: Parallel communication and synchronisation via libmboard.

messages between agents, and actions. To perform the simulation, FLAME

holds each agent as an X-machine data structure, whose state is changed via

a set of transition functions. Furthermore, transition functions may perform215

message exchanges between agents.

The transitions between the states of the agents are accomplished by keeping

the X-machines in linked lists. The simulation environment has one linked list

for each state of a specific kind of agent. During the simulation, all agents’

X-machines are inserted into the list associated to their initial state. Next, the220

corresponding transition function is applied to each X-machine, and they are

moved to the list associated to the agents’ next state. This process is repeated

until all agents reach the last state, which determines the end of the iteration.

When FLAME generates parallel code, this structure is replicated in all the

nodes participating in the simulation and the agents are distributed among these225

nodes. In addition, a communication library called libmboard, which is build on

MPI, is used for managing communication between agents assigned to different

nodes. This library sends all messages to external agents through a coordinated

communication mechanism between different MPI processes as shown in Figure

4. In this way, FLAME provides a general communication mechanism that al-230

lows any pair of agents to interchange messages without needing any replication

of agents in different nodes.

FLAME also has some drawbacks, the main one is that its current version

11

does not include any mechanism to enable the movement of agents between pro-

cesses. Thus, the workload in each process will depend on the evolution of the235

model from its initial population of agents. In addition, the centralised com-

munication scheme based on libmboard limits the scalability of the generated

simulators. These drawbacks do not depend on the particular model being de-

fined and simulated. For this reason, this work also includes general proposals,

independent of the CRC model, for improving the performance of any simulator240

generated with this framework.

3.3. CRC Model Implementation

There are two types of agents in the model of tumour growth presented in

this paper: Cell agent and Helper agent. Cell agent represents both TCs and

TECs. The TC agent consists of a group of TCs, while the TEC agent indicates245

one TEC. The Helper agent is used to compute the last cell Id and is run only

once for each iteration. In FLAME, the agents perform actions according to

predefined rules, iteration by iteration. The iteration in the model is defined as

30 minutes in real time. The predefined rules on memory variables of the agents

are defined for updating the position of the agents, cell cycle, oxygen concentra-250

tion, VEGF concentration and variables related to angiogenesis. The position

of the agents are computed based on physical rules defined in [20]. The number

of functions the agents have is also introduced to perform tumour growth cou-

pled with angiogenesis, such as output location, resolve forces, update rel c oxy,

update rel c gf, cycle, collapse TECs and update last cell id helperagent. Part255

of the model stage graph with function layers is shown in Figure 5.

4. Optimisation Strategies

Several optimisations are needed in order to execute realistic simulations of

the CRC model described in Section 2 in a reasonable time.

On the one hand, in terms of performance, the implementation of the model260

introduced in Section 3.3 has a clear bottleneck because of the Helper agent.

12

collapse_TECs

update_rel_c_oxy

message
location9

message
location10

layer 18

layer 19

layer 20

layer 21

layer 22

layer 23

output_location_10

output_location_9

message
new_cell_data

cycle

message
collapse

layer 24

message
collapse_starter update_rel_c_gf

update_last_cell_id
_helperagent

Figure 5: State graph with function layers in the ABMS to implement tumour growth and

development in vasculature.

During the execution of the simulation, there is only one instance of this agent,

which is responsible for creating every new tumour cell. Therefore, a specific

optimisation has been devised for reducing the negative impact of this agent on

the simulation performance.265

On the other hand, the CRC model simulation is likely to present load imbal-

ances because of the creation and death of tumour cells. However, this problem

is not exclusive of this particular model and can occur in any ABMS where

agents may appear and disappear. Consequently, the general optimisations in-

troduced in FLAME for reducing load imbalance are presented.270

4.1. Model Performance Optimisation

The model presented in Section 3.3 needs to assign unique id numbers to

each new TC. Given that FLAME lacks features to supply these ids, developers

implemented the Helper agent as the responsible for creating new TC with

unique agent id numbers for each TC.275

However, the implementation of this agent produces important performance

problems in the parallel simulation. First, whenever a TC cycle determines cell-

division, the parent-cell sends an agent creation request to the Helper agent.

13

Figure 6: Original Helper agent diagram for TC replication.

This request is a message that contains a copy of the parent-cell information in

order to perform a cell replication. Then, the Helper reads all the agent creation280

requests to perform the cell replications assigning consecutive id numbers (Fig-

ure 6 shows the TC replication process). This means that all messages, including

all the necessary information for creating a TC agent, have to be processed by

the same agent and that all new TC agents are created in the node where the

Helper is located. This implementation quickly produces uneven workloads and285

represents a bottleneck because the agent creation and creation requests are

centralised in one process.

Figure 7: Helper agent operation in two step for TC replication.

In order to solve this problem, the TC replication process has been redesigned

as a two-step operation which is depicted in Figure 7. The first step consists

in creating the new TC by the respective parent-cell with a temporal negative290

14

integer id, then requesting the Helper agent for a new id to replace the temporal

id. The Helper agent processes the requests replacing each temporal id with

the proper id. In the second step, performed at the beginning of the next

iteration, the Helper sends messages with the pairs {temporal id, final id} to

all the processes in the simulation. These messages are recovered by the new295

TC agents, which substitute their temporal ids by the final ones before starting

their life cycle simulations.

This modification reduces the amount of data communicated because only

the temporal id is sent to the Helper, and, most important, this reduces the

load imbalance because the new TC agents are created in the same node of300

their parent cells.

4.2. FLAME Performance Optimisation

Section 3.2 introduced the main characteristics of FLAME and also its main

drawbacks. This framework does not include a load balancing mechanism and

its centralised communication scheme limits the scalability of the generated305

simulators.

This section describes how FLAME has been extended with mechanisms for

(1) automatically and dynamically balancing the simulator load and (2) for de-

centralising communication between the nodes participating in the simulation.

Different parts of this work have been previously published in [21], [22], and [23]310

but here we present the general policy that dynamically balances the compu-

tational load of the simulation considering also the amount of communication

among the compute nodes.

For implementing a load balancing policy, it is necessary to be able to move

agents from one node to another, and, for decentralising communications, it315

is necessary to provide some control mechanism over the messages sent by the

agents. In this Section, we first discuss the extensions done to FLAME for agent

migration and output message filtering and, next, we describe the design and

implementation of the general load balancing policy.

15

4.2.1. Agent Migration320

An agent migration mechanism is necessary to implement policies for solv-

ing load/communication imbalance problems. Consequently, FLAME has been

enhanced for automatically generating efficient routines for migrating agents.

In order to deliver this new feature, we have added a new template for gen-

erating the migration routines. It is migration.tmpl, which generates variables,325

data structures and algorithms to develop the migration process.

The template engine has been modified to process this template to obtain

the information about the agent types, the variables (properties) of the agents,

and the size of each agent variable.

Internally, the template engine uses this information for generating migration330

routines alongside the simulation code as shown in Figure 8. Once the simulation

code has been created, the migration routines can be used for moving agents

between simulation processes. The migration process can be subdivided into

two procedures: dispatching agents and acquiring agents.

Figure 8: Base-diagram of the FLAME framework with migration routines.

The dispatching procedure consists of removing, packing (serialising) and335

sending the selected agents in the sender processes. This procedure holds a

migration list for each target process and type of agent. Then, the agents to be

migrated are extracted from the simulation process X-machine list associated

to its current state and inserted in the corresponding migration list. Once all

migrating agents have been inserted in the appropriated list, they are serialised340

in a set of contiguous memory buffers to be packed, using the corresponding

MPI functions, in order to be sent in a single message to a specific receiving

process. Finally, the message is asynchronously sent to the receiving process

16

for overlapping the creation of the next message with the communication of the

previous one.345

The acquiring procedure consists of receiving, unpacking (deserialise) and

adding the agents in the recipient processes.

The messages with packages of agents arrive to the recipient process in

buffers that must be unpacked using the corresponding MPI functions. Once the

agents X-machines have been unpacked, they are inserted in the list associated350

with their state alongside the other agents in the recipient process.

The migration routines are specifically generated for each type of agent in

the model, and it is possible to perform migrations after any transition. The fol-

lowing list introduces the main migration routines. The suffix NAME indicates

the name of a specific type of agent.355

• Pop NAME : moves agents X-machines to a specific linked list and removes

them from the current process.

• Pack NAME : packs (serialises) all agents X-machines kept in the linked

lists in contiguous memory buffers, one buffer for each recipient.

• Send NAME/Recv NAME : prototypes to define how to send and receive360

sets of packet agents.

• Unpack NAME : unpack (deserialise) agents X-machines from the buffer

to the appropriated object.

• Push NAME : add an agent to the current process inserting the received

agent into the adequate X-machine list.365

4.2.2. Output Message Filtering

FLAME uses broadcast for implementing its board approach, leaving the

recipient agents the possibility of using input filters for choosing which messages

to read. However, FLAME does not publicise routines intended to send messages

to specific processes, although its communication library libmboard is able to370

do this task through the MB Filter*-family functions shown in Listing 1.

17

These functions facilitate targeting of a set of specific processes for sending

the data of local message boards (outgoing messages). For doing so, a filter

function must be provided by the user. This filter must receive two arguments:

a pointer to the message and the rank of an MPI process, and it must return 1375

if the message has to be sent to the process with the given rank or 0 otherwise.

Using these filters, each simulation process can create separate buffers for each

remote MPI process sending only the relevant messages to each process, avoiding

global communications at the cost of creating more buffers and messages.

Listing 1: “Board and Filter initialisation”
380

/∗ Create an MB Board o b j e c t ∗/
MB Create(&board msg , s izeof (msg)) ;

/∗ Create an MB F i l t e r o b j e c t ∗/
MB Filter f i l t e r G ;

/∗ Link Code−2 to the f i l t e r ∗/385

MB Filter Create(& f i l t e r G , &isTargetPid) ;

/∗ Assign t h a t f i l t e r to the board ∗/
MB Filter Ass ign (board msg , f i l t e r G) ;

The reason why FLAME does not publicise these functions is that using them390

requires users to know which agents are assigned to each simulation process,

which is clearly in a lower abstraction level with respect to using input filters.

Figure 9: Base-diagram of the FLAME framework with message filtering and migration rou-

tines.

Nevertheless, we have implemented a new template in order to generate

output messages filtering routines using the MB Filter* functions as shown in

18

Figure 9. The new template is mapfiltering.tmpl, which generates the message395

filters according to the agent’s message phases.

4.2.3. Load Balancing Mechanism

Including the possibility of generating migration routines for the agents and

message filters for outgoing messages give experienced users the ability to control

placement of the agents and the amount of communications during the simu-400

lation process. However, we have gone beyond these extensions designing and

implementing a load balancing mechanism that relies on them and the Zoltan

graph partition library [13], which is, to the best of out knowledge, the only well

established partition library supporting the possibility of being used at runtime.

This mechanism is based on representing the entire agent system as a weighted405

and directed graph where vertices represent agents computation time and edges

communication volume between agents. Using this structure it is possible to

achieve two important goals:

1. Agent locations can be known for automatically generating the parame-

ters for the output message filters described in Section 4.2.2. This way,410

broadcast communication can be minimised reducing the synchronisation

and communication overhead.

2. The graph can be provided to Zoltan functions for determining an ap-

propriated partition for balancing the simulator load. With the output

produced by Zoltan some agents will be migrated using the migration415

routines described in Section 4.2.1.

However, the amount of memory and time needed to build a graph, where

each particular agent is a vertex and each message an edge, is unaffordable

for any simulation involving thousands or millions of agents. Consequently, an

efficient mechanism for building a suitable structure has been devised and in-420

tegrated into FLAME. This mechanism consists in clustering agents using a

grid-based structure and a rasterisation approach similar to the one presented

in [24]. The grid-based structure characterises spatial regions during the simu-

lation and the rasterisation approach allows to explore only the space occupied

19

by agents, making it is possible to model an indefinitely large domain. It is425

worth noticing that this approach is likely to collapse several communications

on the same edge, so, a graph structure does not accurately represent the actual

interaction of the agents because these edges may have more than one recipi-

ent. Consequently, we have used a different structure, also supported by Zoltan,

called the hypergraph which contains hyperedges that can be used to connect430

two or more vertices.

Creating the Hypergraph. We have designed a 3D-Grid Construction Algorithm

(shown in Algorithm 1) that builds each cube on the fly mapping each agent

coordinates to its container cube. Each cube is identified by three integers

indicating the x -, y- and z -axis origins of the cube.435

In this way, cubes will be constructed along with the exploration of the

existing agents across processes, every agent will be assigned to only one cube,

and all cubes will have a positive agent counter. The space covered by cubes

is named the known space, so new cubes will appear when agents are created

or moved outside the known space. If a new agent appears within the known440

space, the agent counter belonging to its corresponding agent cube is increased.

The value of cube size should be estimated in accordance with the influence

range of the agents. This influence range is usually named halo in the liter-

ature [25] and it can be defined as the maximum distance an agent message

can reach. Consequently, cube size should be a function of the agents’ halo,445

searching for a compromise between minimising the number of neighbours of

each cube (cube size = halo), which minimises communication, and getting the

proper number of cubes, for having enough cubes to be able to balance the

load without creating an unmanageable hypergraph. Basically, if the halo of an

agent is large then cube size should be a fraction of the halo, while, if it is small450

then cube size should be a multiple of the halo.

Nevertheless, the second step after defining the cubes (hypergraph vertices)

consists in defining the hyperedges. For doing so, we use algorithm 2.

20

Algorithm 1 Grid Construction
c groupi ← cubes ∈ parallel processi

for all agent ∈ parallel processi do

xyz ← x, y, z − coordinates of agent

cidx ← ceil(x / cube size)

cidy ← ceil(y / cube size)

cidz ← ceil(z / cube size)

agent cube← {cidx, cidy, cidz}
if agent cube ∈ c groupi then

++agent counter of agent cube

else

add agent cube to c groupi

end if

end for

Algorithm 2 Cube Interaction
c range← ceil(agent range/cube size)

global group← cubes in all processes

for all agent ∈ parallel processi do

agent cube← {cidx, cidy, cidz}
for all cube ∈ global group do

cx ← x-component of cube

cy ← y-component of cube

cz ← z-component of cube

if agent cube ∈ [cxyz ± c range] then

cube ∈ interaction region

end if

end for

end for

This algorithm simplifies the access to the information of relations among

21

agents. The recipient cubes of an agent message are determined using its halo.455

Additionally, this algorithm helps to distinguish whether the recipients of an

agent message are located in a cube belonging to another process or not; hence,

the required external communications can be predicted. The global view of the

cubes is defined gathering the cube information from every process. This global

cube information contains the cube’s ternary ids and the number of agents460

within each cube. In the same way, the agent’s message connectivity map can

be built using the Cube Interaction Algorithm. The euclidean distance is used

for estimating the interaction regions of each cube. Algorithm 2 obtains the

cube’s halo (interval [cxyz − c range, cxyz + c range]) by dividing the agent

interaction range by cube size. This halo is then used for filtering the agents’465

messages in order to avoid broadcast communication.

Hypergraph-based Partitioning. Agent based applications workload can vary

during the simulation due to issues related to the complexity of the model

and interaction patterns. We have implemented in FLAME a dynamic load

balancing mechanism (DLB), which decides the global reconfiguration of the470

workload when performance measurements indicate imbalances according to an

imbalance threshold value. The threshold is a value between 0.0 and 1.0 that

represents the acceptable percentage of imbalance over/under the mean.

Computing times and number of agents are monitored at each parallel pro-

cess in each iteration of the simulation and shared among all the processes.475

Hence, each process knows the global workload situation and executes the al-

gorithm with the same input. Consequently, all processes calculate the same

reconfiguration of the workload without a central decision unit.

FLAME has been extended to launch the load balancing mechanism when

the imbalance factor exceeds the given threshold. The monitoring is executed480

locally by all processes and the processes workload measurements are broad-

casted along with the simulation synchronisation at the end of each iteration.

The computing time is determined using the previous iteration results and the

current number of agents because the current computing time is obtained at

22

the end of the iteration. The predicted computing time for the current itera-485

tion, described by Equation 3, is considered to be the same as of the previous

iteration weighted by the variation rate of the number of agents.

comp timeiter =
comp timeiter−1 × num agentsiter

num agentsiter−1
(3)

Next, the process imbalance factor is calculated using the broadcasted cur-

rent computing time. This factor, calculated with equation 4, represents the

degree of imbalance according to the computation time mean. Then, tolerance,490

which establishes the range considered as balanced, and tolerance range, which

is used to detect imbalances, are calculated using equations 5 and 6.

ib factori =
comp timei

avg time
(4)

tolerance = avg time× threshold (5)

tolerance range = avg time± tolerance (6)

If ib factori > tolerance range, DBL must reallocate agents for reducing the

load imbalance. The reallocation is performed according to the Zoltan Parallel

Hypergraph and Graph partitioning (PHG) decision [26].495

At this point, the hypergraph built using algorithms 1 and 2 needs to be

transformed into a hypergraph represented as a sparse matrix. This implies

that each hypergraph vertex must have a unique global identifier represented as

an unsigned integer. Given that each vertex represents a spatial cube containing

a set of agents, DLB is responsible for generating unique global cube ids and500

for assuring that each cube is assigned to only one parallel process.

To accomplish this, an initial migration of agents belonging to the same cube

but assigned to different processors is done. Then, using broadcasted cube’s lo-

cation and computation workload, unique global cube ids are defined and vertex

weights assigned. Later, each parallel process stores this global hypergraph into505

23

Figure 10: Base-diagram of the FLAME framework with message filtering and migration

routines.

a CSR sparse matrix format. Next, PHG performs the parallel hypergraph par-

titioning and returns the vertex ids that should be moved to other processors in

order to balance the load. Finally, in accordance with the PHG results, DLB will

introduce the necessary migration calls across the simulation processes. After

the agent migration occurs, the simulation will resume normally.510

Part of these extensions have been implemented adding to FLAME the new

templates (1) and (2), while the rest have been implemented through modifica-

tions to original FLAME templates (3), (4) and (5) :

1. measures.tmpl, which generates the measurement points for monitoring

the application performance.515

2. zoltanmap.tmpl, transforms the connectivity map into the graph data

structures required by the hypergraph partitioner.

3. main.tmpl, addition of the hypergraph data structure initialisation, gath-

ering of performance data, and calls to measurement functions.

4. memory.tmpl, initialisation of the output message filtering data structures.520

5. messageboards.tmpl, addition of counters of received messages.

Finally, Figure 10 illustrates the final block diagram of FLAME including

all the extensions presented in this work.

4.2.4. Comparison with other Load Balancing Proposals

Several proposals have been published for solving the load balancing prob-525

lem. In this section, we discuss the differences between some, to the best of our

knowledge, relevant proposals and ours.

24

Cosenza et al. [27] present a distributed load balancing mechanism for

ABMS based on modifying the boundaries of a global space assigned to neigh-

bouring processors. This is a low overhead mechanism triggered in each simula-530

tion step. However, its low overhead is mainly due to the fact that it is assumed

that few agents will be moved between processors. In addition, it is also as-

sumed that all agents are of the same type, which makes it easier to decide new

boundaries. The load balancing scheme we are presenting can deal successfully

with different kind of agents and it is not constrained to neighbouring proces-535

sors, at the cost of a slightly higher overhead, which is compensated by the fact

that the mechanism is only triggered when the imbalance threshold is exceeded.

Toh Da-Jun et al. [28] present an ABMS platform for multicellular biolog-

ical systems, which, similarly to our proposal, incorporates a load balancing

mechanism including migration of cells. However, apart for being a specialised540

platform (FLAME is far more generalist), this load balancing mechanism is

centralised and, in consequence, not scalable to nowadays systems.

Xu et al. [29] introduce a dynamic load balancing mechanism for an ABMS

platform for traffic simulation, which presents many similarities with our pro-

posal. They also use a graph partitioning mechanism triggered when a certain545

imbalance threshold is exceeded, producing the redistribution of agents among

computation nodes. However, there are significant differences between both

proposals. First, our approach is completely distributed , while theirs uses a

master-worker approach where the master is responsible for detecting the im-

balance and computing the new partitioning, and the workers are responsible550

for taking measurements and doing the redistribution. Clearly, for larger sim-

ulations the master may become a bottleneck. Second, our proposal optimises

agent migration by packing agents, while in their system, agents are migrated

one at a time. Finally, although it can be easily generalised, this proposal is

specific for ABMS based traffic simulations, while ours has been implemented555

in a general framework.

25

5. Experimental Assessment

This section focuses on analysing the preliminary performance results of

the enhancements over the tumour model definition and the new capabilities

of FLAME working together. The optimisations were tested using FLAME560

0.17.0, libmboard 0.3.1 and OpenMPI 1.6.4. The experiments were executed on

an IBM Cluster with the following features: 32 IBM x3550 Nodes, 2xDual-Core

Intel(R) Xeon(R) CPU 5160 @ 3.00GHz 4MB L2 (2x2), 12 GB Fully Buffered

DIMM 667 MHz, and Integrated dual Gigabit Ethernet. The simulations were

commenced with an initial population of 63.505 agents, which is an adequate565

workload for the cluster used for running the experiments.

For the model performance enhancements experiments, 64 processes were

used, while for the platform performance optimisations, 128 processes were used.

In both cases, the results correspond to 20 iterations of the tumour development

model, which are enough for highlighting the effect of the optimisations.570

5.1. Model Behaviour

The results obtained from the model showing a tumour growth and devel-

opment associated with the vasculature are presented in Figure 11. The com-

putational domain size is 1200 um and time step is 30 minutes. A small tumour

was placed at t = 0 with two interconnected parent vessels.575

Initially, every TC is quiescent, secrets VEGF which stimulates the existing

vessels, and proliferates. Increasing VEGF concentration, after a certain period

of time, results in new sprout formation from the parent vessels whereby new

vessels grow towards the hypoxic region of the tumour. Widespread quiescent

cells in the area with no vasculature appear due to insufficient oxygen supply.580

5.2. Model Optimisations Experiments

The first experimental objective was to analyse the model optimisations

described in section 4.1. Tables 2 and 3 show the total number of bytes commu-

nicated to create new cells. It can be seen that the new id request in two steps

significantly reduces (80%) the amount of bytes communicated to spawn a new585

26

Figure 11: Tumour growth associated with angiogenesis. TCs which has a smaller oxygen

level than the threshold are displayed in cyan, and TCs in proliferation with a oxygen level

greater than the threshold in purple. TECs are displayed in red. TECs which have VEGF

levels over the threshold and hence can divide are shown in yellow.

cell. In order to minimise the impact of having two messages instead of one,

the new id request message is sent at the end of the iteration and the new id

response is sent at the beginning of the next iteration, along with the simulation

step synchronisation. In addition, this improvement also contributes to have a

much better distribution of new cells during the simulation.590

Message new cell data

num msgs size/msg(bytes) total(bytes)

9484 184 1745056

Table 2: Total messages of the first approach of the model for 20 iteration in 64 processes.

Message new id request new id response

num msgs size/msg(bytes) total(bytes) size/msg(bytes) total(bytes)

9484 20 189680 16 151744

Table 3: Total messages of the enhanced version of the model for 20 iteration in 64 processes.

Figures 12 and 13 depict the new agents distribution across the parallel

27

processes for both approaches. Here, red bars show the number of agents per

process after a round-robin distribution when FLAME starts the simulation;

yellow bars show the agent increment per process after 20 iterations. Figure 12

depicts an excessive increase in agents in the process where the Helper agent is595

performing all cell replications, while the two-step approach evenly distributes

the new cells among all processes as shown in Figure 13. This occurs because,

in this approach, each parent cell is responsible for creating the new cell and

cloning its information in the division phase. In this way, the model optimisation

helps the platform to manage the imbalances.600

Figure 12: Tumour development model. Figure 13: Enhanced Tumour model.

5.3. Platform Optimisations Experiments

The experiments, shown below, present the performance gains using the

FLAME extensions described in Section 4.2. The extensions, working together,

allow the global reconfiguration of the workload by means of the dynamic load

balancing mechanism (DLB).605

Figure 14: Tumour development model. Figure 15: PHG distribution (4 processes).

28

Zoltan Parallel Hypergraph and Graph partitioning (PHG) can be config-

ured as partition, repartition, or refine. The partition mode (PhgPA) does not

take into account the current vertices distribution (a partition from scratch).

The repartition mode (PhgRP) considers the current vertices distribution for

repartitioning the hypergraph. Finally, the refine mode (PhgRE) refines the610

given distribution minimising the number of changes. Figure 14 shows a graph-

ical representation of the model where the green and red spheres represent TC

and TEC agents respectively. Figure 15 shows an example of the resulting 3D

grid from PhgPA for 4 processes.

In order to reduce the time to find an appropriate graph partition, the PHG615

accuracy has been set up to 0.2 (20%) of imbalance deemed acceptable and the

cube size is defined as 50 microns. Also, all the initial graph partitions use the

PhgPA mode with the exception of the FLAME default methods (FlameGeo

and FlameRR, geometric and round-robin respectively).

Method DLB Calls Avg vertices Call msgs internal/external

PhgRP 10 3746 95.95/4.05

PhgPA 10 3743 96.57/3.43

PhgRE 9 3745 96.53/3.47

Table 4: Details of the DLB options.

Table 4 shows DLB communication performance. For all versions, the num-620

ber of DLB calls and average number of vertices are similar, and the commu-

nication workload is reduced. The percentage of the amount of messages held

in each process is higher than the messages dispatched to external processes

(internal/external respectively). Dispatching less messages also improves the

performance of other processes because they have to examine a significantly625

smaller amount of incomming messages.

Table 5 shows the execution times of the DLB versions by comparing differ-

ent PHG options with three static approaches (FlameRR, FlameGeo and initial

PhgPA with message filtering). DLB versions obtain much better results than

29

Approach DLB overhead(sec) Simulation time(sec)

FlameGeo - 26218.9

FlameRR - 1038.1

Static PhgPA - 881.3

DLB PhgRP 83.3 741.3

DLB PhgPA 63.4 710.7

DLB PhgRE 56.9 699.7

Table 5: Total execution time.

the static approaches. FlameGeo leads to the highest time because it divides630

the space into orthogonal rectangles, creating uneven or empty partitions ac-

cording to the agents’ spatial locations, while FlameRR randomly distributes

the agents generating a similar number of agents per process. The PHG versions

gain more than 30% over the FlameRR case in terms of execution time, even

an initial Static PhgPA partitioning improves the FLAME times because it can635

use message filtering. In addition, the hypergraph DLB options show similar

results and the main difference relies on the total PHG overhead time as shown

in the second column of Table 5. Nevertheless, repartitioning the current parti-

tion (PhgRP) is expensive compared to partitioning from scratch (PhgPA), and

refining the hypergraph (PhgRE) is the best approach for these experiments.640

Figure 16: Execution times. Figure 17: DLB Average overhead.

Figure 16 depicts the execution time and the overhead shown in Table 5. For

all versions, DLB significantly reduces the execution time. FlameGeo has been

30

excluded because of its excessive execution time. Figure 17 shows that most of

the DBL overhead comes from partitioning the hypergraph using Zoltan. This

result suggests that reducing the number of vertices by increasing the cube size645

could reduce the Zoltan overhead. As a result, the DLB strategy enhances the

performance of the parallel simulation using agent migration, message filtering,

agent connectivity map and performance measures monitoring.

6. Conclusions

A comprehensive, 3D model of tumour growth and its dependence on an-650

giogenesis has been developed in the present study. It represents a multiscale

model which includes vasculature at the tissue scale, cell-to-cell interaction at

the cellular scale, and cell cycle and VEGF production at the sub/intracellular

scale. TC and TEC were modelled using an ABMS approach, incorporating con-

tinuous modelling of oxygen and VEGF concentrations. ABMS is widely used655

to simulate tumour growth in cancer research, but imposes significant demands

on computational resources and is often very time consuming.

Consequently, parallel ABMS arises as a promising way for achieving realistic

simulations in a reasonable time. However, parallel ABMS simulations usually

present load imbalances and excessive communication problems.660

We have designed the Dynamic Load Balancing (DLB) mechanism that in-

cludes all the features (agent migration, message filtering, agent connectivity

mapping and performance measurement monitoring) needed to improve the per-

formance of parallel ABMS simulations. This mechanism has been implemented

in FLAME and used on the CRC simulation model presented in this work.665

DLB obtains good results, significantly reducing the simulation execution up

to 48%. Our approach leads to better performance than the standard FLAME

partitioning methods, and our results confirm the importance of introducing

the components presented in this paper. This dynamic approach introduces an

overhead in the simulation, but its benefits are significantly greater and directly670

impact the efficiency of the message filtering and load balancing mechanisms.

31

Finally, our approach will facilitate the development of ABMS for tumour

growth and therapy responses that more realistically incorporate complex biol-

ogy at a spatial and/or temporal scale.

Acknowledgements675

This work has been partially supported by MICINN-Spain under contract

TIN2011- 28689-C02-01 and TIN2014-53234-C2-1-R and GenCat-DIUiE(GRR)

2014-SGR-576. This research was also funded by the European Community’s

Framework Programme Seven (FP7) Programme under contract No. 278981

AngioPredict and supported by the DJEI/DES/SFI/HEA Irish Centre for High-680

End Computing (ICHEC).

References

[1] L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal,

Global cancer statistics, 2012., CA Cancer J Clin 65 (2) (2015) 87–108.

[2] H. M. Byrne, T. Alarcon, M. R. Owen, S. D. Webb, P. K. Maini, Modelling685

aspects of cancer dynamics: a review., Philos Trans A Math Phys Eng Sci

364 (1843) (2006) 1563–1578.

[3] T. S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer mod-

eling., Annu Rev Biomed Eng 13 (2011) 127–155.

[4] E. Passante, M. L. Wrstle, C. T. Hellwig, M. Leverkus, M. Rehm, Systems690

analysis of apoptosis protein expression allows the case-specific prediction

of cell death responsiveness of melanoma cells., Cell Death Differ 20 (11)

(2013) 1521–1531.

[5] A. U. Lindner, C. G. Concannon, G. J. Boukes, M. D. Cannon, F. Llambi,

D. Ryan, K. Boland, J. Kehoe, D. A. McNamara, F. Murray, E. W. Kay,695

S. Hector, D. R. Green, H. J. Huber, J. H. M. Prehn, Systems analysis of

bcl2 protein family interactions establishes a model to predict responses to

chemotherapy., Cancer Res 73 (2) (2013) 519–528.

32

[6] M. Rehm, H. J. Huber, H. Dussmann, J. H. M. Prehn, Systems analysis of

effector caspase activation and its control by x-linked inhibitor of apoptosis700

protein., EMBO J 25 (18) (2006) 4338–4349.

[7] L. Tang, A. L. van de Ven, D. Guo, V. Andasari, V. Cristini, K. C. Li,

X. Zhou, Computational modeling of 3d tumor growth and angiogenesis

for chemotherapy evaluation., PLoS One 9 (2014) e83962.

[8] H. Perfahl, H. M. Byrne, T. Chen, V. Estrella, T. Alarcn, A. Lapin, R. A.705

Gatenby, R. J. Gillies, M. C. Lloyd, P. K. Maini, M. Reuss, M. R. Owen,

Multiscale modelling of vascular tumour growth in 3d: the roles of domain

size and boundary conditions., PLoS One 6 (4) (2011) e14790.

[9] M. Welter, H. Rieger, Physical determinants of vascular network remodel-

ing during tumor growth., Eur Phys J E Soft Matter 33 (2) (2010) 149–163.710

[10] J. Engelberg, G. Ropella, C. A. Hunt, Essential operating principles for

tumor spheroid growth, BMC Systems Biology 2 (1) (2008) 110.

[11] S. Christley, B. Lee, X. Dai, Q. Nie, Integrative multicellular biological

modeling: a case study of 3d epidermal development using gpu algorithms,

BMC Systems Biology 4 (1) (2010) 107.715

[12] A. Plastino, C. C. Ribeiro, N. Rodriguez, Developing spmd applications

with load balancing, Parallel Computing 29 (6) (2003) 743–766.

[13] E. G. Boman, U. V. Catalyurek, C. Chevalier, K. D. Devine, The Zoltan

and Isorropia parallel toolkits for combinatorial scientific computing: Par-

titioning, ordering, and coloring, Scientific Programming 20 (2) (2012) 129–720

150.

[14] K. Bartha, H. Rieger, Vascular network remodeling via vessel cooption,

regression and growth in tumors, Journal of theoretical biology 241 (4)

(2006) 903–918.

33

[15] R. K. Standish, R. Leow, Ecolab: Agent based modeling for C++ program-725

mers, CoRR cs.MA/0401026.

[16] N. Collier, M. North, Parallel agent-based simulation with repast for high

performance computing, Simulation 89 (10) (2013) 1215–1235.

[17] G. Cordasco, R. De Chiara, A. Mancuso, D. Mazzeo, V. Scarano, C. Spag-

nuolo, Bringing together efficiency and effectiveness in distributed simula-730

tions: the experience with d-mason, Simulation 89 (10) (2013) 1236–1253.

[18] X. Rubio-Campillo, Pandora: A versatile agent-based modelling platform

for social simulation, in: Proceedings of SIMUL 2014, The Sixth Interna-

tional Conference on Advances in System Simulation, IARIA Publishing,

2014, pp. 29–34.735

[19] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, C. Greenough,

Exploitation of high performance computing in the flame agent-based sim-

ulation framework, in: High Performance Computing and Communication

2012 IEEE 9th International Conference on Embedded Software and Sys-

tems (HPCC-ICESS), 2012 IEEE 14th International Conference on, 2012,740

pp. 538–545.

[20] T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood, S. MacNeil,

An integrated systems biology approach to understanding the rules of ker-

atinocyte colony formation, Journal of the Royal Society Interface 4 (17)

(2007) 1077–1092.745

[21] C. Márquez, E. César, J. Sorribes, Agent migration in hpc systems using

flame, in: Euro-Par 2013: Parallel Processing Workshops, Vol. 8374 of

Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2014, pp.

523–532.

[22] C. Márquez, E. César, J. Sorribes, A load balancing schema for agent-based750

spmd applications, in: International Conf. on Parallel and Distributed Pro-

cessing Techniques and Applications, PDPTA, 2013, pp. 62–69.

34

[23] C. Márquez, E. César, J. Sorribes, Impact of message filtering on hpc

agent based simulations, in: European Simulation and Modelling Confer-

ence 2014, 2014, pp. 62–72.755

[24] T. Petkovic, S. Loncaric, Supercover plane rasterization - a rasterization

algorithm for generating supercover plane inside a cube, in: GRAPP 2007,

Proceedings of the Second International Conference on Computer Graphics

Theory and Applications, Barcelona, Spain, March 8-11, 2007, Volume

GM/R, 2007, pp. 327–332.760

[25] H. Parry, M. Bithell, Large scale agent-based modelling: A review and

guidelines for model scaling, in: Agent-Based Models of Geographical Sys-

tems, Springer Netherlands, 2012, pp. 271–308.

[26] K. Devine, E. Boman, R. Heaphy, R. Bisseling, U. Catalyurek, Parallel hy-

pergraph partitioning for scientific computing, in: Parallel and Distributed765

Processing Symposium, 2006. IPDPS 2006. 20th International, 2006, pp.

10 pp.–.

[27] B. Cosenza, G. Cordasco, R. De Chiara, V. Scarano, Distributed load bal-

ancing for parallel agent-based simulations, in: Parallel, Distributed and

Network-Based Processing (PDP), 2011 19th Euromicro International Con-770

ference on, 2011, pp. 62–69.

[28] T. Da-Jun, F. Tang, T. Lee, D. Sarda, A. Krishnan, A. Goryachev, Parallel

computing platform for the agent-based modeling of multicellular biolog-

ical systems, in: Parallel and Distributed Computing: Applications and

Technologies, Springer, 2005, pp. 5–8.775

[29] Y. Xu, W. Cai, H. Aydt, M. Lees, Efficient graph-based dynamic load-

balancing for parallel large-scale agent-based traffic simulation, in: Pro-

ceedings of the 2014 Winter Simulation Conference, WSC ’14, IEEE Press,

Piscataway, NJ, USA, 2014, pp. 3483–3494.

35

Guiyeom Kang is currently a Postdoctoral researcher at the Centre for Systems Medicine, Royal
College of Surgeons in Ireland. She was awarded an Irish Research Council’s Embark Postgraduate
Scholarship to pursue Ph.D. for 3 years and received her Ph.D. in biomedical engineering from the
University College Dublin in 2014. Her research interests include developing computational and
mathematical models to help clinical planning to provide personalised therapies for patients. In
particular, her research focuses on multiscale modelling of tumour growth and anti-cancer drug
delivery and neural activity including intrinsic properties and network dynamics in healthy and
disease states.

Claudio Márquez got his BS degree in computer science in 2007 from University of Magallanes
(Chile) and his MSc in High Performance Computing in 2011 from Universitat Autònoma de
Barcelona (Spain). From 2011 onward, he is pursuing a Ph.D. in High Performance Computing at
the same university. Currently, he is working at Barcelona Supercomputing Center (BSC) in the
joint research project with Repsol for developing software systems for seismic imaging (BSIT). His
main research interests include the design and development of optimisations techniques for parallel
computing applications, dynamic partitioning techniques, application tuning, simulations and
algorithms.

Ana Barat is a Postdoctoral Scientist and Data Base Manager under the FP7 Angiopredict Project
at the Centre for Systems Medicine, Royal College Surgeons in Ireland since 2013. She received
her Ph.D. in Computational Biology in Dublin City University in 2007. During 2007-2009, she was
awarded an Irish Research Council for Science, Engineering and Technology - EMBARK Award,
and from 2010-2013 she received a Marie Curie International Mobility Fellowships INSPIRE
Award, focusing on the treatment, analysis and modelling of cancer-related biomolecular data. She
is a member of the Marie Curie Fellows Association and Association France-Moldavie.

Annette%Byrne!is!Senior!Lecturer!(Physiology),!Principal!Investigator!Tumour!Biology/Molecular!
Imaging!at!the!Royal!College!of!Surgeons,!Ireland.!!!In!1999!following!completion!of!her!Ph.D.,!she!
was!awarded!the!prestigious!UCSF!John!Kerner!Fellowship!in!gynaecologic!oncology.!She!
transitioned!to!industry!in!2001!as!a!preMclinical!cancer!drug!development!Scientist.!On!her!return!
to!academia!in!2005!(University!College!Dublin),!she!established!Ireland’s!first!multimodality!
molecular!imaging!facility.!Currently,!she!is!Coordinator!of!Angiopredict,!a!major!European!
Commission!funded!research!platform!in!the!translational!oncology!space,!whose!focus!is!towards!
an!improved!!precision!medicine!strategy!in!colorectal!cancer.!

Jochen%H.M.%Prehn!is!the!Director!for!the!Centre!of!Systems!Medicine!and!Chair!of!Physiology!at!
the!Royal!College!of!Surgeons!in!Ireland.!He!pioneered!the!translation!of!dynamic!systems!models!
of!apoptosis!signalling!into!clinical!settings,!delivering!novel!predictive!tools!for!therapy!responses!
in!cancer!patients.!He!was!appointed!as!Ireland’s!first!Science!Foundation!Ireland!Research!
Professor!and!is!currently!an!SFI!Investigator.!He!is!an!expert!on!medical!systems!biology!and!cell!
survival!and!death!signalling!and!has!190!peerMreviewed!publications!indicating!the!high!
productivity!of!his!research!group.

Joan Sorribes got his MSc in Physics in 1981 and the Ph.D. in Computer Engineering in 1987
from Universitat Autònoma de Barcelona (UAB). Actually is an associate professor from 1989 in
the Computer Architecture Department (UAB). He has worked multiprocessing in distributed
systems. At present his main research interest is High Performance Computing, specially in models
to tune real parallel and distributed applications, large-scale parallel computing, dynamic tuning,
scientific computing on the cloud, and big data processing

*Biographies (Text)

Eduardo César got his BS degree in computer science in 1992 from University Simón Bolívar
(Venezuela). He got the MSc in computer science in 1994 and in 2006 the Ph.D. in computer
science, both from Universitat Autònoma de Barcelona (Spain). Since 1998 his investigation is
related to parallel and distributed computing. He is currently involved in Spanish national projects
and the European project Autotune. His main interests are focused on high performance parallel
applications, automatic performance analysis and dynamic tuning. He has been involved in the
definition of performance models for automatic and dynamic performance tuning on cluster
environments.

!

!
Guiyeom!Kang!
!

!
!
!
Claudio!Márquez!
!

Ana!Barat

!
!

Annette!Byrne!
!

Jochen Prehn

Joan Sorribes

Eduardo!César!
!

!
!

*Biographies (Photograph)

