4,471 research outputs found
The equivalence principle, uniformly accelerated reference frames, and the uniform gravitational field
The relationship between uniformly accelerated reference frames in flat
spacetime and the uniform gravitational field is examined in a relativistic
context. It is shown that, contrary to previous statements in the pages of this
journal, equivalence does not break down in this context. No restrictions to
Newtonian approximations or small enclosures are necessary
Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame
The Planck spectrum of thermal scalar radiation is derived suggestively
within classical physics by the use of an accelerating coordinate frame. The
derivation has an analogue in Boltzmann's derivation of the Maxwell velocity
distribution for thermal particle velocities by considering the thermal
equilibrium of noninteracting particles in a uniform gravitational field. For
the case of radiation, the gravitational field is provided by the acceleration
of a Rindler frame through Minkowski spacetime. Classical zero-point radiation
and relativistic physics enter in an essential way in the derivation which is
based upon the behavior of free radiation fields and the assumption that the
field correlation functions contain but a single correlation time in thermal
equilibrium. The work has connections with the thermal effects of acceleration
found in relativistic quantum field theory.Comment: 23 page
Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data
We describe a procedure to identify and remove a class of non-stationary and
non-harmonic interference lines from gravitational wave interferometer data.
These lines appear to be associated with the external electricity main
supply, but their amplitudes are non-stationary and they do not appear at
harmonics of the fundamental supply frequency. We find an empirical model able
to represent coherently all the non-harmonic lines we have found in the power
spectrum, in terms of an assumed reference signal of the primary supply input
signal. If this signal is not available then it can be reconstructed from the
same data by making use of the coherent line removal algorithm that we have
described elsewhere. All these lines are broadened by frequency changes of the
supply signal, and they corrupt significant frequency ranges of the power
spectrum. The physical process that generates this interference is so far
unknown, but it is highly non-linear and non-stationary. Using our model, we
cancel the interference in the time domain by an adaptive procedure that should
work regardless of the source of the primary interference. We have applied the
method to laser interferometer data from the Glasgow prototype detector, where
all the features we describe in this paper were observed. The algorithm has
been tuned in such a way that the entire series of wide lines corresponding to
the electrical interference are removed, leaving the spectrum clean enough to
detect signals previously masked by them. Single-line signals buried in the
interference can be recovered with at least 75 % of their original signal
amplitude.Comment: 14 pages, 5 figures, Revtex, psfi
Computational Resources to Filter Gravitational Wave Data with P-approximant Templates
The prior knowledge of the gravitational waveform from compact binary systems
makes matched filtering an attractive detection strategy. This detection method
involves the filtering of the detector output with a set of theoretical
waveforms or templates. One of the most important factors in this strategy is
knowing how many templates are needed in order to reduce the loss of possible
signals. In this study we calculate the number of templates and computational
power needed for a one-step search for gravitational waves from inspiralling
binary systems. We build on previous works by firstly expanding the
post-Newtonian waveforms to 2.5-PN order and secondly, for the first time,
calculating the number of templates needed when using P-approximant waveforms.
The analysis is carried out for the four main first-generation interferometers,
LIGO, GEO600, VIRGO and TAMA. As well as template number, we also calculate the
computational cost of generating banks of templates for filtering GW data. We
carry out the calculations for two initial conditions. In the first case we
assume a minimum individual mass of and in the second, we assume
a minimum individual mass of . We find that, in general, we need
more P-approximant templates to carry out a search than if we use standard PN
templates. This increase varies according to the order of PN-approximation, but
can be as high as a factor of 3 and is explained by the smaller span of the
P-approximant templates as we go to higher masses. The promising outcome is
that for 2-PN templates the increase is small and is outweighed by the known
robustness of the 2-PN P-approximant templates.Comment: 17 pages, 8 figures, Submitted to Class.Quant.Gra
Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors
We report an upper bound on the strain amplitude of gravitational wave bursts
in a waveband from around 800Hz to 1.25kHz. In an effective coincident
observing period of 62 hours, the prototype laser interferometric gravitational
wave detectors of the University of Glasgow and Max Planck Institute for
Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations
and incident directions. This is roughly a factor of 2 worse than the
theoretical best limit that the detectors could have set, the excess being due
to unmodelled non-Gaussian noise. The experiment has demonstrated the viability
of the kind of observations planned for the large-scale interferometers that
should be on-line in a few years time.Comment: 11 pages, 2 postscript figure
Sound Speeds, Cracking and Stability of Self-Gravitating Anisotropic Compact Objects
Using the the concept of cracking we explore the influence of density
fluctuations and local anisotropy have on the stability of local and non-local
anisotropic matter configurations in general relativity. This concept,
conceived to describe the behaviour of a fluid distribution just after its
departure from equilibrium, provides an alternative approach to consider the
stability of selfgravitating compact objects. We show that potentially unstable
regions within a configuration can be identify as a function of the difference
of propagations of sound along tangential and radial directions. In fact, it is
found that these regions could occur when, at particular point within the
distribution, the tangential speed of sound is greater than radial one.Comment: 17 pages, 8 figures, 4 new references added. typos correcte
Lagrangian perfect fluids and black hole mechanics
The first law of black hole mechanics (in the form derived by Wald), is
expressed in terms of integrals over surfaces, at the horizon and spatial
infinity, of a stationary, axisymmetric black hole, in a diffeomorphism
invariant Lagrangian theory of gravity. The original statement of the first law
given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system
contained, in addition, volume integrals of the fluid fields, over a spacelike
slice stretching between these two surfaces. When applied to the
Einstein-perfect fluid system, however, Wald's methods yield restricted
results. The reason is that the fluid fields in the Lagrangian of a gravitating
perfect fluid are typically nonstationary. We therefore first derive a first
law-like relation for an arbitrary Lagrangian metric theory of gravity coupled
to arbitrary Lagrangian matter fields, requiring only that the metric field be
stationary. This relation includes a volume integral of matter fields over a
spacelike slice between the black hole horizon and spatial infinity, and
reduces to the first law originally derived by Bardeen, Carter and Hawking when
the theory is general relativity coupled to a perfect fluid. We also consider a
specific Lagrangian formulation for an isentropic perfect fluid given by
Carter, and directly apply Wald's analysis. The resulting first law contains
only surface integrals at the black hole horizon and spatial infinity, but this
relation is much more restrictive in its allowed fluid configurations and
perturbations than that given by Bardeen, Carter and Hawking. In the Appendix,
we use the symplectic structure of the Einstein-perfect fluid system to derive
a conserved current for perturbations of this system: this current reduces to
one derived ab initio for this system by Chandrasekhar and Ferrari.Comment: 26 pages LaTeX-2
Emission patterns of neutral pions in 40 A MeV Ta+Au reactions
Differential cross sections of neutral pions emitted in 181Ta + 197Au
collisions at a beam energy of 39.5A MeV have been measured with the photon
spectrometer TAPS. The kinetic energy and transverse momentum spectra of
neutral pions cannot be properly described in the framework of the thermal
model, nor when the reabsorption of pions is accounted for in a
phenomenological model. However, high energy and high momentum tails of the
pion spectra can be well fitted through thermal distributions with unexpectedly
soft temperature parameters below 10 MeV.Comment: 16 pages (double-spaced), 5 figures; corrections after referee's
comments and suggestion
The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models
The periodic standing-wave method for binary inspiral computes the exact
numerical solution for periodic binary motion with standing gravitational
waves, and uses it as an approximation to slow binary inspiral with outgoing
waves. Important features of this method presented here are: (i) the
mathematical nature of the ``mixed'' partial differential equations to be
solved, (ii) the meaning of standing waves in the method, (iii) computational
difficulties, and (iv) the ``effective linearity'' that ultimately justifies
the approximation. The method is applied to three dimensional nonlinear scalar
model problems, and the numerical results are used to demonstrate extraction of
the outgoing solution from the standing-wave solution, and the role of
effective linearity.Comment: 13 pages RevTeX, 5 figures. New version. A revised form of the
nonlinearity produces better result
Evidence for Thermal Equilibration in Multifragmentation Reactions probed with Bremsstrahlung Photons
The production of nuclear bremsstrahlung photons (E 30 MeV) has
been studied in inclusive and exclusive measurements in four heavy-ion
reactions at 60{\it A} MeV. The measured photon spectra, angular distributions
and multiplicities indicate that a significant part of the hard-photons are
emitted in secondary nucleon-nucleon collisions from a thermally equilibrated
system. The observation of the thermal component in multi-fragment
Ar+Au reactions suggests that the breakup of the thermalized
source produced in this system occurs on a rather long time-scale.Comment: Revised version, accepted for publication in Physical Review Letters.
4 pages, 4 fig
- …