699 research outputs found

    Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units

    Get PDF
    The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [{\lambda}], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. In this work, we study the probability distribution function (PDF) of the magnetic autocorrelation lengths observed in the solar wind at different distances from the Sun. We use observations from Helios, ACE, and Ulysses spacecraft. We distinguish between the usual solar wind and one of its transient components (Interplanetary Coronal Mass Ejections, ICMEs), and study also solar wind samples with low and high proton beta [\beta_p ]. We find that in the last 3 regimes the PDF of {\lambda} is a log-normal function, consistent with the multiplicative and non-linear processes that take place in the solar wind, the initial {\lambda} (before the Alfv\'enic point) being larger in ICMEs

    Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events

    No full text
    International audienceThis study concentrates on the characteristics of field-aligned currents (FACs) in both hemispheres during the extreme storms in October and November 2003. High-resolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer) than in the Northern (winter) Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in Dst and the interplanetary magnetic field component Bz, in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1) the equatorward shift of FACs on the dayside is directly controlled by the southward IMF Bz and there is a saturation of the latitudinal displacement for large value of negative Bz. In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2) The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the Dst index. (3) The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25° in latitude

    Taylor Scale and Effective Magnetic Reynolds Number Determination from Plasma Sheet and Solar Wind Magnetic Field Fluctuations

    Get PDF
    [1] Cluster data from many different intervals in the magnetospheric plasmas sheet and the solar wind are employed to determine the magnetic Taylor microscale from simultaneous multiple point measurements. For this study we define the Taylor scale as the square root of the ratio of the mean square magnetic field (or velocity) fluctuations to the mean square spatial derivatives of their fluctuations. The Taylor scale may be used, in the assumption of a classical Ohmic dissipation function, to estimate effective magnetic Reynolds numbers, as well as other properties of the small scale turbulence. Using solar wind magnetic field data, we have determined a Taylor scale value of 2400 ± 100 km, which is used to obtain an effective magnetic Reynolds number of about 260,000 ± 20,000, and in the plasma sheet we calculated a Taylor scale of 1900 ± 100 km, which allowed us to obtain effective magnetic Reynolds numbers in the range of about 7 to 110. The present determination makes use of a novel extrapolation technique to derive a statistically stable estimate from a range of small scale measurements. These results may be useful in magnetohydrodynamic modeling of the solar wind and the magnetosphere and may provide constraints on kinetic theories of dissipation in space plasmas.Fil: Weygand, James M.. University of California; Estados UnidosFil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kivelson, M. G.. University of California; Estados UnidosFil: Walker, R. J.. University of California; Estados Unido

    Statistical study of the effect of ULF fluctuations in the IMF on the cross polar cap potential drop for northward IMF

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95210/1/jgra21543.pd

    Eulerian decorrelation of fluctuations in the interplanetary magnetic field

    Get PDF
    A method is devised for estimating the two-time correlation function and the associated Eulerian decorrelation timescale in turbulence. With the assumptions of a single decorrelation time and a frozen-in flow approximation for the single-point analysis, the method compares two-point correlation measurements with single-point correlation measurements at the corresponding spatial lag. This method is applied to interplanetary magnetic field measurements from the Advanced Composition Explorer and Wind spacecraft. An average Eulerian decorrelation time of 2.9 hr is found. This measures the total rate of distortion of turbulent fluid elements—including sweeping, nonlinear distortion, and wave propagation.Fil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Weygand, J. M.. University of California; Estados UnidosFil: Kivelson, M. G.. University of California; Estados UnidosFil: Osman, K. T.. University of Delaware; Estados Unido

    Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity

    Get PDF
    Magnetic field data from the Cluster spacecraft in the magnetospheric plasma sheet are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple‐point measurements for multiple intervals over a range of mean magnetic field directions for three different levels of geomagnetic activity. We have determined that in the plasma sheet the correlation scale along the mean magnetic field direction decreases from 19,500 ± 2200 to 13,100 ± 700 km as the auroral electrojet activity increases from quiet (200 nT). The reverse occurs for the correlation scale perpendicular to the magnetic field, which increases from 8200 ± 600 km to 13,000 ± 2100 km as the auroral electrojet activity increases from quiet to active conditions. This variation of the correlation scale with geomagnetic activity may mean either a change in the scale size of the turbulence driver or may mean a change in the predominance of one over another type of turbulence driving mechanism. Unlike the correlation scale, the Taylor scale does not show any clear variation with geomagnetic activity. We find that the Taylor scale is longer parallel to the magnetic field than perpendicular to it for all levels of geomagnetic activity. The correlation and Taylor scales may be used to estimate the effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the magnetosphere and can contribute to our understanding of energetic particle diffusion in the magnetosphere.Fil: Weygand, James M.. University of California; Estados UnidosFil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: El Alaoui, M.. University of California; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kivelson, M. G.. University of California; Estados Unido

    (S)norlaudanosoline synthase. the first enzyme in the benzylisoquinoline biosynthetic pathway

    Get PDF
    1. introduction Isoquinoline alkaloids form the largest group of alkaloids in the plant kingdom. Numerous publications deal with aspects of the biosynthesis of these compounds in vivo [ 11, while isoquinoline biosynthesis at the cell-free level had hardly been touched [Z]. The initial reaction in isoquinoline biosynthesis has long [3] been assumed to be a condensation of two aromatic units, both derived from tyrosine, namely dopamine and 3,4-d~ydroxyphenylacet~dehyde [4]. This scheme was later modified [5] where it was reported that condensation of dopamine with 3,4-dihydroxyphenylpyruvate would lead to an amino acid, norlaudanosoline-l-carboxylic acid, which in turn, by decarboxylation, would yield norlaudanosoline

    Technique for measuring and correcting the Taylor microscale

    Get PDF
    We discuss and develop methods to estimate and refine measurements of the Taylor microscale from discrete data sets. To study how well a method works, we construct a time series of discrete data with a known power spectrum and Taylor scale, but with various truncations of the resolution that eliminate higher frequencies in a controlled fashion. We compute the second-order structure function and correlation function, assuming that the unresolved dissipation range spectrum has various values of spectral index. A series of Taylor scale estimates are obtained from parabolic fits to subsets of the correlation function data, and these are extrapolated to the limit of zero separation. The error in this procedure, for finite time resolution sampling, depends on the spectral index in the dissipation range. When the spectral form is known, we can compute a correction factor that improves the estimate of the Taylor microscale value determined from the extrapolation method and band-limited data. Application of this technique to spacecraft observations of solar wind fluctuations is illustrated.Fil: Chuychai, P.. Mae Fah Luang University; Estados Unidos. Ministry of Education; TailandiaFil: Weygand, J. M.. University of California; Estados UnidosFil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomia y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomia y Física del Espacio; ArgentinaFil: Smith, C. W.. University of New Hampshire; Estados UnidosFil: Kivelson, M. G.. University of California; Estados Unido

    Anisotropy of the Taylor Scale and the Correlation Scale in Plasma Sheet and Solar Wind Magnetic Field Fluctuations

    Get PDF
    Magnetic field data from nine spacecraft in the magnetospheric plasma sheet and the solar wind are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple-point measurements for multiple intervals with a range of mean magnetic field directions. We have determined that in the solar wind the Taylor scale is independent of direction relative to the mean magnetic field, but the correlation scale along the mean magnetic field (2.7 106 ± 0.2 106 km) is longer than along the perpendicular direction (1.5 106 ± 0.1 106 km). Within the plasma sheet we found that the correlation scale varies from 16,400 ± 1000 km along the mean magnetic field direction to 9200 ± 600 km in the perpendicular direction. The Taylor scale is also longer parallel to the magnetic field (2900 ± 100 km) than perpendicular to it (1100 ± 100 km). In the solar wind the ratio of the parallel correlation scale to the perpendicular correlation scale is 2.62 ± 0.79; in the plasma sheet the ratio is 1.78 ± 0.16, which indicates that the turbulence in both regions is anisotropic. The correlation and Taylor scales may be used to estimate effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the solar wind and the magnetosphere and can contribute to our understanding of solar and galactic cosmic ray diffusion in the heliosphere.Fil: Weygand, James M.. University of California; Estados UnidosFil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kivelson, M.G.. University of California; Estados UnidosFil: Kistler, L. M.. University of New Hampshire; Estados UnidosFil: Mouikis, C.. University of New Hampshire; Estados Unido
    corecore