1,488 research outputs found

    Fog interception by Ball moss (<i>Tillandsia recurvata</i>)

    Get PDF
    Interception losses are a major influence in the water yield of vegetated areas. For most storms, rain interception results in less water reaching the ground. However, fog interception can increase the overall water storage capacity of the vegetation and once the storage is exceeded, fog drip is a common hydrological input. Fog interception is disregarded in water budgets of semiarid regions, but for some plant communities, it could be a mechanism offsetting evaporation losses. <i>Tillandsia recurvata</i> is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by <i>T. recurvata</i> was measured in controlled conditions and applying simulated rain or fog. Juvenile, vegetative specimens were used to determine the potential upperbound storage capacities. The storage capacity was proportional to dry weight mass. Interception storage capacity (<i>C</i><sub>min</sub>) was 0.19 and 0.56 mm for rainfall and fog respectively. The coefficients obtained in the laboratory were used together with biomass measurements for <i>T. recurvata</i> in a xeric scrub to calculate the depth of water intercepted by rain. <i>T. recurvata</i> contributed 20 % to the rain interception capacity of their shrub hosts: <i>Acacia farnesiana</i> and <i>Prosopis laevigata</i> and; also potentially intercepted 4.8 % of the annual rainfall. Nocturnal stomatic opening in <i>T. recurvata</i> is not only relevant for CO<sub>2</sub> but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543 ± 77 vs. 325 ± 56 mg, <i>p</i> = 0.048). The storage capacity of <i>T. recurvata</i> leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because potential storage capacity is very high, in the laboratory experiments it took up to 12 h at a rate of 0.26 l h<sup>−1</sup> to reach saturation conditions when fog was applied

    Series Solution for the Time-Fractional Coupled mKdV Equation Using the Homotopy Analysis Method

    Get PDF
    We present new analytical approximated solutions for the space-time fractional nonlinear partial differential coupled mKdV equation. A homotopy analysis method is considered to obtain an infinite series solution. The effectiveness of this method is demonstrated by finding exact solutions of the fractional equation proposed, for the special case when the limit of the integral order of the time derivative is considered. The comparison shows a precise agreement between these solutions

    Gibberellin A1 Metabolism Contributes to the Control of Photoperiod-Mediated Tuberization in Potato

    Get PDF
    Some potato species require a short-day (SD) photoperiod for tuberization, a process that is negatively affected by gibberellins (GAs). Here we report the isolation of StGA3ox2, a gene encoding a GA 3-oxidase, whose expression is increased in the aerial parts and is repressed in the stolons after transfer of photoperiod-dependent potato plants to SD conditions. Over-expression of StGA3ox2 under control of constitutive or leaf-specific promoters results in taller plants which, in contrast to StGA20ox1 over-expressers previously reported, tuberize earlier under SD conditions than the controls. By contrast, StGA3ox2 tuber-specific over-expression results in non-elongated plants with slightly delayed tuber induction. Together, our experiments support that StGA3ox2 expression and gibberellin metabolism significantly contribute to the tuberization time in strictly photoperiod-dependent potato plants

    Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia

    Get PDF
    The emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19 using deep learning approaches and medical images such as Chest Computed Tomography (CT) and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in collaboration with “S.E.S Hospital Universitario de Caldas” (https://hospitaldecaldas.com/) from Colombia and organized following the Medical Imaging Data Structure (MIDS) format. The dataset contains 7,307 chest X-ray images divided into 3,077 and 4,230 COVID-19 positive and negative images. Images were subjected to a selection and anonymization process to allow the scientific community to use them freely. Finally, different convolutional neural networks were used to perform technical validation. This dataset contributes to the scientific community by tackling significant limitations regarding data quality and availability for the detection of COVID-19. © 2022, The Author(s)

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    First Assessment of the Impacts of the COVID-19 Pandemic on Global Marine Recreational Fisheries

    Get PDF
    This work is the result of an international research effort to determine the main impacts of the COVID-19 pandemic on marine recreational fishing. Changes were assessed on (1) access to fishing, derived from lockdowns and other mobility restrictions; (2) ecosystems, because of alterations in fishing intensity and human presence; (3) the blue economy, derived from alterations in the investments and expenses of the fishers; and (4) society, in relation to variations in fishers’ health and well-being. For this, a consultation with experts from 16 countries was carried out, as well as an international online survey aimed at recreational fishers, that included specific questions designed to capture fishers’ heterogeneity in relation to behavior, skills and know-how, and vital involvement. Fishers’ participation in the online survey (5,998 recreational fishers in 15 countries) was promoted through a marketing campaign. The sensitivity of the fishers’ clustering procedure, based on the captured heterogeneity, was evaluated by SIMPER analysis and by generalized linear models. Results from the expert consultation highlighted a worldwide reduction in marine recreational fishing activity. Lower human-driven pressures are expected to generate some benefits for marine ecosystems. However, experts also identified high negative impacts on the blue economy, as well as on fisher health and well-being because of the loss of recreational fishing opportunities. Most (98%) of the fishers who participated in the online survey were identified as advanced, showing a much higher degree of commitment to recreational fishing than basic fishers (2%). Advanced fishers were, in general, more pessimistic about the impacts of COVID-19, reporting higher reductions in physical activity and fish consumption, as well as poorer quality of night rest, foul mood, and raised more concerns about their health status. Controlled and safe access to marine recreational fisheries during pandemics would provide benefits to the health and well-being of people and reduce negative socioeconomic impacts, especially for vulnerable social groups.Versión del edito
    corecore