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The emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines 
to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further 
spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19  
using deep learning approaches and medical images such as Chest Computed Tomography (CT) 
and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in 
collaboration with “S.E.S Hospital Universitario de Caldas” (https://hospitaldecaldas.com/) from 
Colombia and organized following the Medical Imaging Data Structure (MIDS) format. The dataset 
contains 7,307 chest X-ray images divided into 3,077 and 4,230 COVID-19 positive and negative images. 
Images were subjected to a selection and anonymization process to allow the scientific community 
to use them freely. Finally, different convolutional neural networks were used to perform technical 
validation. This dataset contributes to the scientific community by tackling significant limitations 
regarding data quality and availability for the detection of COVID-19.

Background & Summary
Since the outbreak of COVID-19 in late 2019, and after being declared by the World Health Organization 
(WHO) as a pandemic in March 2020, the research community in Artificial Intelligence (AI) has concentrated 
its efforts in developing tools to aid disease diagnosis in order to control, both effectively and efficiently, its 
spreading. These tools, most of which are based on Machine Learning (ML) or Deep Learning (DL) models, aim 
to overcome the limitations of conventional laboratory tests, such as the Polymerase Chain Reaction (PCR)1. 
Some of these limitations include: (i) the extended period between the sample collection and test result, (ii) the 
low availability and (iii) high cost, especially in developing countries.

Chest Computed Tomography (CT) and X-Ray images have been the primary source of information to 
develop the classification models since they are used by radiologists to detect the disease and estimate its sever-
ity based on the presence and characteristics of affected regions in the lungs known as Ground Glass Opacities. 
In general, both CT and X-Ray are medical imaging techniques that provide images of the internal structure of 
the human body using radiation. With these techniques, it is possible to capture and differentiate bones, soft 
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tissues, fat tissue, and gas areas based on the color they appear on the image2. The CT produces higher quality 
images3 in 3D as opposed to the 2D images generated by the X-Ray technique, but at the expense of a much 
higher radiation dose4, which is harmful to patients in the long term, and requires more complex equipment 
that is less accessible than a conventional X-Ray device. Based on these characteristics, researchers, working on 
the development of ML or DL models for disease detection, have turned their attention to Chest X-Ray images.

Data quality and availability are critical factors when developing systems based on DL models, especially in 
the health sector where the generalization ability of the model is crucial for success in a real-world situation. 
Additionally, DL models require the images to be traceable in terms of the source and acquisition conditions to 
avoid inducing bias to the model based on factors outside image content. In this sense, it is necessary to identify 
the published datasets that are used to train and evaluate models for COVID-19 disease detection. In general, 
the images for positive cases are taken from six primary sources, these are: IEEE80235, BIMCV-COVID19+6, 
Cancer Image Archive7, ML Hannover8, BRIXIA9, and HM Hospitales10. The main limitation with these datasets 
is the low quantity of images, some lower than others, which leads researchers to join multiple datasets generat-
ing data distribution issues in multiple cases. On the other hand, for the images in the negative class researchers 
have used mainly three types of images: from healthy patients, from patients with pneumonia non-associated to 
COVID-19, and images of different pathologies. The following five sources are the most used for negative class 
images: Padchest11, BIMCV-COVID-12, CheXpert13, RSNA14, Chest X-Ray Images (Pneumonia)15.

In order to contribute to the development of DL-based detection models, this paper presents a novel data-
set collected in collaboration with “S.E.S Hospital Universitario de Caldas”, a healthcare institution located in 
the city of Manizales, Colombia. This dataset consists of 3,077 Chest X-Ray images positive for COVID-19 
from studies involving 657 subjects, and 4,230 images negative for COVID-19 from 2,164 different subjects. 
Furthermore, COVID-19 detection models based on Convolutional Neural Networks (CNNs) were trained and 
evaluated by using the presented dataset, aiming to establish a set of benchmark detection performances.

Methods
Design considerations.  In the dataset development of medical images, data must be completely structured 
to facilitate its manipulation. Besides, the non-identifiability of the patient must be guaranteed and the data must 
be curated to avoid biases in the training of the AI models. The images were collected under the approval, and 
supervision, of the “S.E.S Hospital Universitario de Caldas” ethics committee, and every patient gives their con-
sent to the use of properly anonymized data upon entry to the healthcare institution. Therefore, the data curation 
follow the next steps:

•	 Data acquisition: raw data capture from hospitals, clinics or health care providers.
•	 De-identification: Removal or pseudonymization of the patient identification data.
•	 Data transfer: Anonymized or pseudonymized data are transferred to a secure storage site.
•	 Data curation: Procedure performed by radiologists and segmentation specialists to obtain a correct labeling 

of the data.
•	 User access: Repository design for free access to users for any purpose.

A dataset of medical images for AI applications must guarantee at least the use of pseudonyms and, if pos-
sible, the complete anonymization of patient data, since medical images contain information that easily allows 
the identification of patients’ non-transferable personal data, such as name, identification, date and time of the 
x-ray session. This medical information and its security is protected by the legislation itself and is associated 
with strict ethical standards. HIPAA (Health Insurance Portability and Accountability Act) proposes a set of 
best practices to protect the confidentiality, integrity and availability of information. In particular, it addresses 
the unique needs of information security management in the healthcare sector and its operating environments.

Medical imaging is guided by the DICOM (Digital Imaging and Communications in Medicine) standard, 
which aims to ensure interoperability between heterogeneous medical imaging equipment and systems. This 
standard fully controls the handling of image-related information, including the rules for transferring these 
images securely when using ISO-OSI and TCP/IP (Open System Interconnection and Transmission Control 
Protocol/Internet Protocol, respectively) communication protocols.

The data in DICOM format that come from health care providers are data without a clear structure and 
difficult to work with since they have no order or labeling that allows their implementation in AI projects. 
To solve this problem, FISABIO16 has defined and proposed a methodology to standardize the organization 
and management of medical image data: The Medical Imaging Data Structure (MIDS). MIDS provides the 
basis for the dataset approach as an attempt to facilitate the generation of large datasets for AI research, and 
corresponds to a BIDS extension Proposal 25 (BEP025) found at https://bids.neuroimaging.io/get_involved.
html#extending-the-bids-specification. This approach will enable pioneering progress in the development of 
ready-to-use datasets for use in AI projects, as well as the labeling and annotation of these datasets.

Collection and anonymization.  The images collected by specialized health centers contain information 
that must be processed to protect the identity of the patients. For this reason, a process must be established to 
guarantee the security of sensitive data from the images acquisition to their final manipulation by researchers. 
The Fig. 1 illustrates concisely how the data is processed to be later released and freely manipulated by other 
researchers.

PACS (Picture Archiving and Communication System) is a file containing the X-ray images of each patient 
captured by healthcare centers stored in DICOM format17. For this purpose, the following confidentiality pro-
files are established as factors to be taken into account when processing data in DICOM format.
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•	 Delete the basic profile (patient’s name, physician’s name, etc.)
•	 Keep private information secure.
•	 Keep the UID (identifier in the data list does not identify the patient).
•	 Maintain device identity.
•	 Maintain patient characteristics.
•	 Preserve complete dates (Preserving dates is considered a risk because it limits the set of patients to which an 

image may belong. However, in some cases, retaining dates may be necessary for research purposes).
•	 Modify dates while preserving the space of time between each date.
•	 Clean up descriptors (patient name may be present in demographic or physical descriptors).
•	 Clean structured content
•	 Clean graphics

The GitHub repository https://github.com/BIMCV-CSUSP/Smart-Upload was implemented. It contains a 
set of scripts to upload DICOM files from a neutral or PACS file to the XNAT (https://www.xnat.org/) platform 
through the CTP (Clinical Trial Processor) server (https://www.rsna.org/research/imaging-research-tools). 
This script will clean and decompress the images before uploading them to the CTP. In addition, the CTP will 
anonymize and upload the files to the XNAT platform.

Once the images have been anonymized and uploaded to XNAT they will be accessible to anyone interested 
in researching with this type of data, which facilitates the manipulation of the data for researchers in data sci-
ence, data analysis, artificial intelligence, and other projects. At this stage we have completely anonymized data, 
as all data that could link a patient or health personnel to an x-ray image has been removed.

Data Records
The proposed dataset is publicly available and can be downloaded from Figshare18. The dataset was collected in 
collaboration with “S.E.S Hospital Universitario de Caldas” (Manizales, Caldas, Colombia). It contains 7,307 
chest X-ray images, and divided into 3,077 COVID-19 positive and 4,230 COVID-19 negative images.

Likewise, for the COVID-19 negative and COVID-19 positive sets, there are three ways of structuring the 
data. The first way consists of images downloaded directly from XNAT after being anonymized; the format of 
these images is DICOM, and contains the metadata of these images that did not require anonymization. The 
structure of this modality can be seen in Fig. 2. In this case there is a root folder (dicomdir) and a separate folder 
for each patient that contains all the performed studies.

Correspondingly, as can be seen in Fig. 3, the second modality corresponds to images organized according 
to the MIDS structure. In this structure, there is the main folder of the project. Inside it is the folder derivatives, 
which contains the roi_path folder and will have the XML files of each session of each of the subjects; these files 
correspond to the coordinates of the segmentation maps if they have been generated in the XNAT; otherwise, 
these files will not exist. Likewise, there are folders for each subject of the study with their corresponding ses-
sions and tables with the description of the dates of these sessions. Alike, within each session, the radiographic 
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data before transferring 
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Fig. 1  Information flow from the origin where the data is identified in the PACS of the health institution to the 
final storage of the raw data in the PACS of the health institution to the final storage of the raw data in XNAT.
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image is associated in png format with the same name as a JSON file with the metadata extracted from the 
DICOM format.

Finally, to perform the technical validations using deep learning techniques, the images have been separated 
into training, validation, and test subsets, using three different random state seeds and maintaining a 70-15-
15 percentages distribution in the number of images in each of the subsets. This structuring modality has the 
images packed in numpy array files.

Technical Validation
All images were taken with two brands of X-ray equipment, GE Healthcare model Optima XR646 and AGFA 
model CR85. As Fig. 4 shows, the equipment brand with the most images taken is GE Healthcare with 2,777 
COVID-19 positive and 2,113 COVID-19 negative images. Likewise, images taken with AGFA brand equipment 
show 300 and 2,117 images for COVID-19 positive and COVID-19 negative, respectively.

COVID-19 positive.  For the positive cases of COVID-19, 3,077 chest X-ray images were collected from 
studies performed on 657 subjects between September 17, 2020, and November 29, 2021. Figure 5 shows the 
distribution of the study date of each image, where the most significant number of images presented in the dataset 
belongs to studies performed between March and August 2021. Similarly, the images have different sizes. For 
instance, the smallest image in this dataset contains 646 × 835 pixels, while the largest is 2,828 × 2,320 pixels. The 
labeling process for the positive COVID-19 images was based on a positive result in a conventional laboratory 
test, such as the PCR.

Also, there is a different distribution between the gender of the subjects, where the number of male subjects 
is 1,803 and female subjects is 1,274, as shown in Fig. 6. Furthermore, Fig. 7 shows the age distribution of the 
COVID-19 positive subjects who underwent radiography, and it can be evidenced how most of the subjects are 
between 50 and 80 years old.

COVID-19 negative.  Analogously, the negative cases for COVID-19 corresponds to 4,230 images from 
2,164 subjects between July 17, 2016, and April 12, 2021. Figure 8 shows the distribution of the study date of 
each image, where an essential part of the images are collected before the first case of COVID-19 was detected in 
Colombia on March 6, 202019. Furthermore, the other part of the images, corresponding to the dates on which 
positive COVID-19 cases were detected, belongs to subjects in whom the test had a negative result. Similarly to 
the images of the positive cases of COVID-19, these images have different sizes, where the smaller image contains 

dicomdir/
1208200617178_22/

1208200617178_22_8973.dcm
1208200617178_22_8943.dcm
1208200617178_22_2973.dcm
1208200617178_22_8923.dcm
1208200617178_22_4473.dcm

1208200617178_23/
1208200617178_24/
1208200617178_25/

Fig. 2  Data structure in DICOM format.
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Fig. 3  Data structure in MIDS format.

https://doi.org/10.1038/s41597-022-01576-z


5Scientific Data |           (2022) 9:757  | https://doi.org/10.1038/s41597-022-01576-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

1,128 × 1,692 pixels and the larger one 2,970 × 2,460 pixels. The negative class label is ensured by the date of the 
study for those performed before 2020, and based on a negative PCR result for studies from 2020 and 2021.

Furthermore, the gender distribution of the negative images is similar to the positive images. The majority 
of the images correspond to male subjects with 2537 images and the smaller portion to female subjects with 
1678 images, as shown in Fig. 9. Finally, Fig. 10 shows the age distribution of the subjects, where a large part 
corresponds to young patients between 20 and 30 years old. However, there is also an essential part of subjects 
between 60 and 90 years old, similar to COVID-19 positive part in Fig. 7.

Fig. 4  Distribution of X-ray equipment brands.

Fig. 5  Study date distribution of COVID-19 positive images.

Fig. 6  Gender distribution of COVID-19 positive images.
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Experiments.  With the dataset presented in this paper, we developed and tested a set of deep learning 
experiments. One of the most critical aspects of the development of the experiments consists in ensuring that 
COVID-19 is really classified. To this end, the presented experiments took into account the same conditions of 
the X-ray-taking equipment. Only the images generated with the GE Healthcare X-ray equipment were taken 
from the proposed dataset since this has most of the images for positive and negative COVID-19, as shown in 
Fig. 4. With this, we ensure that COVID-19 is classified and not a type of image given the capture conditions of 
the equipment. This experiments show the deep learning performance with different data distributions (seeds). 
The data distributions are verified so that the training, validation, and test datasets have different patients. This 

Fig. 7  Age distribution of COVID-19 positive images.

Fig. 8  Study date distribution of COVID-19 negative images.

Fig. 9  Gender distribution of COVID-19 negative images.
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verification prevents that the CNN only recognize a specific patient. In the same way, models were applied with 
2 distributions of the dataset, the first one consisting of the complete images, and for the second one a segmenta-
tion of the lung was performed, following the architecture and configuration proposed in20. In both distributions 
normalization was applied as part of the preprocessing.

Lung segmentation.  There are multiple ways to perform image segmentation, in this case we implemented the 
Deep Learning model Unet21, which has been shown to achieve good performance in segmentation of medical 
images. During training, this model receives a Chest X-Ray image as input and a mask with ones on the recon-
struction area and zeros in the rest as the target; at test time, model input is a Chest X-Ray image, and the output 
is the predicted mask.

Unet models are often defined in terms of the number of filters in the contraction blocks (See Eq. 1), where F0 
is the number of the filters on the first block, and i corresponds to the index of the block. Eq. 2 shows the number 
of filters on each expansion block where Ff is the number of filters on the last contraction block. The difference 
between the contraction and the expansion blocks is that the latter uses transposed convolutions instead of the 
regular convolutions used in the contraction stage. In our experiment F0 was set experimentally to 64.

Filters F# 2 (1)i
0

1= ∗ −

Filters
F

#
2 (2)

f
i=

Kernel size in convolutional layers was set to 3 × 3, using he-normal for kernel initialization, and padding 
same. For the Maxpooling layers, the pool size was 2 × 2. The Dropout rate in the first blocks of each stage was 
0.1, 0.2 for the third and fourth blocks, and 0.3 for the last block. The kernel size was reduced to 2 × 2 on the 
transposed convolutional layers, with a stride of 2 × 2, and padding same. Finally, the last convolutional layer 
uses one filter of kernel size 1 × 1.

Data distributions for the experiments. 

•	 Seed 1:
- Train, 3,213: negatives, 1,389; positives, 1,824
- Test, 701: negatives, 303; positives, 398

•	 Seed 2:
- Train, 3,237: negatives, 1,409; positives, 1,828
- Test, 685: negatives, 299; positives, 386

•	 Seed 3:
- Train, 3,211: negatives, 1,389; positives, 1,822
- Test, 730: negatives, 300; positives, 430

Results.  Image classification problems have been solved using CNNs. In this work, different CNN-based mod-
els are present in the Keras library, which includes MobilNet22, Xception23, EfficieNet24, VGG1625, VGG1925, 
InceptionResNetV226, InceptionV326, DenseNet20127, ResNet152V228, ResNet5029, among others, were used, 
where all models were tested, and the three best models were chosen with each seed. With each of these models, 
transfer learning was used to improve the training resource requirements and the accuracy and convergence. 

Fig. 10  Age distribution of COVID-19 negative images.
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Model weights were obtained by training on ImageNet, a dataset with millions of images and 1000 possible 
labels30. Four dense layers were used for classification, using 1024 neurons in the first dense layer, 512 in the 
second layer, 64 in the third, and 2 in the fourth dense layer. The activation function used for the first three 
dense layers is ReLu and Softmax for the fourth dense layer. Adam optimizer with a learning rate of 0.0001 and 
Categorical Crossentropy is used.

Tables 1, 2 show the experimental results with the test data and each partition seed. The results achieved 
in the different experiments proposed are encouraging, with accuracies about 87% and 84% for the best mod-
els, especially when taking into account the homogeneity in the acquisition conditions on the images for both 
classes, using the same radiology equipment and a similar distribution of gender and age, which leads to think-
ing of a true detection of COVID-19 disease. It is worth mentioning, that these results may be valuable in terms 
of establishing a benchmark that allows comparison with future experiments.

Usage Notes
For convenience, the dataset can be downloaded in three image modalities for both the positive and negative 
COVID-19 parts:

•	 Images downloaded directly from XNAT, including the organization shown in Fig. 2, with images in DICOM 
format.

•	 MIDS format shown in Fig. 3.
•	 Preprocessed and stored in numpy array format to perform the experiments.

We encourage researchers to use this dataset to validate the performance of ML or DL models, aiming for 
true generalization in the detection of the disease. Although the results presented here when using CNNs for 
classification on the dataset are encouraging results, it is recommended to make more combinations and tests 
with it, being the decision of each researcher how to use it.

CNN architecture Accuracy Specificity
F1 
score Recall Precision FN FP TN TP

Seed 1

InceptionV3 87.73 90.10 88.83 85.93 91.94 56 30 273 342

VGG16 86.31 92.08 87.17 81.91 93.14 72 24 279 326

ResNet152V2 85.88 84.16 87.52 87.19 87.85 51 48 255 347

Seed 2

VGG16 87.15 84.95 88.63 88.86 88.40 43 45 254 343

InceptionV3 86.28 86.62 87.60 86.01 89.25 54 40 259 332

ResNet152V2 86.13 81.94 87.90 89.38 86.47 41 54 245 345

Seed 3

ResNet152V2 86.16 84.00 88.19 87.67 88.71 53 48 252 377

DenseNet201 84.66 80.33 87.07 87.67 86.47 53 59 241 377

InceptionV3 84.52 87.33 86.27 82.56 90.33 75 38 262 355

Table 1.  Networks performance on Colombian test dataset without lung segmentation.

CNN architecture Accuracy Specificity F1 score Recall Precision FN FP TN TP

Seed 1

InceptionV3 84.88 82.50 86.68 86.68 86.68 53 53 250 345

VGG16 84.59 80.20 86.63 87.94 85.37 48 60 243 350

DenseNet201 84.31 77.56 86.62 89.45 83.96 42 68 235 356

Seed 2

InceptionResNetV2 84.96 83.28 86.61 86.27 86.95 53 50 249 333

DenseNet201 84.09 81.27 85.94 86.27 85.60 53 56 243 333

InceptionV3 83.36 84.28 84.84 82.64 87.16 67 47 252 319

Seed 3

VGG16 83.70 79.00 86.27 86.98 85.58 56 63 237 374

InceptionResNetV2 82.60 80.67 85.04 83.95 86.16 69 58 242 361

InceptionV3 81.10 86.67 82.79 77.21 89.25 98 40 260 332

Table 2.  Networks performance on Colombian test dataset with lung segmentation.
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Code availability
The source code to generate the technical analysis has been uploaded to GitHub: https://github.com/BioAITeam/
COVID19-Detection/tree/main/Cov-Caldas%20Dataset.
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