3,421 research outputs found

    Effect of Flow Steering Angle Toward the Hydrokinetic Turbine Performance

    Get PDF
    The kinetic turbine is one of the solutions for use in low-speed river flows ranging from 0.01–2.8 m/s. This kinetic turbine is used as a conversion equipment to convert the water kinetic energy into an electrical energy. The working principle of a kinetic turbine is utilizing and relies on the water kinetic energy. Water flowing into the turbine area will produce a momentum on the turbine blades. This momentum change would then push the turbine blades and finally spin the turbine runner. The aim of research is thedetermination of the effect of water flow steering angle (a) and water flow rate variation in the kinetic turbine performance. This research uses vertical axis kinetic turbines with eight curve blade attached to the turbine runner. The variables used are two values of water flow steering angle, namely 25°and 35°. The water flow rate variation of 30 m3/h, 35 m3/h, 40 m3/h and 45 m3/h. The method used in this study uses a real experimental method. These two variations would then compare with the result of a hydrokinetic turbine performance done on the previous research.The results show that the water flow steering angle a affected the kinetic turbine performance (power, efficiency and torque). From these several water flow steering angle and water flow rate variations, the turbine performance with a 35° water flow steering angle get the highest performance compared with the use of 25° and 14° water flow steering angle. The greater the flow angle and the greater the water flow rate, the greater the torque, power and efficiency. The highest turbine power produced, P=17.5 W, occurs on the 35° water steering angle, and on a Q=45 m3/h water flow rate and on a 80 rpm turbine rotation. While the highest turbine efficiency, h=27 %, occurred on the Q=30 m3/h water flow rate, on a 60 rpm turbine rotation and on a water flow steering angle a=35°. The highest turbine torque, 3.1 Nm, occurs at Q=45 m3/h water flow rate at a maximum turbine braking and on a water steering angle a=35°

    Cavitation damage in liquid metals /potassium studies/ Technical progress report, 1 Aug. - 31 Oct. 1966

    Get PDF
    Cavitation damage resistance of refractory alloys in high temperature liquid potassiu

    Time-asymptotic solutions of the Navier-Stokes equation for free shear flows using an alternating-direction implicit method

    Get PDF
    An uncoupled time asymptotic alternating direction implicit method for solving the Navier-Stokes equations was tested on two laminar parallel mixing flows. A constant total temperature was assumed in order to eliminate the need to solve the full energy equation; consequently, static temperature was evaluated by using algebraic relationship. For the mixing of two supersonic streams at a Reynolds number of 1,000, convergent solutions were obtained for a time step 5 times the maximum allowable size for an explicit method. The solution diverged for a time step 10 times the explicit limit. Improved convergence was obtained when upwind differencing was used for convective terms. Larger time steps were not possible with either upwind differencing or the diagonally dominant scheme. Artificial viscosity was added to the continuity equation in order to eliminate divergence for the mixing of a subsonic stream with a supersonic stream at a Reynolds number of 1,000

    A rational approach to the use of Prandtl's mixing length model in free turbulent shear flow calculations

    Get PDF
    Prandtl's basic mixing length model was used to compute 22 test cases on free turbulent shear flows. The calculations employed appropriate algebraic length scale equations and single values of mixing length constant for planar and axisymmetric flows, respectively. Good agreement with data was obtained except for flows, such as supersonic free shear layers, where large sustained sensitivity changes occur. The inability to predict the more gradual mixing in these flows is tentatively ascribed to the presence of a significant turbulence-induced transverse static pressure gradient which is neglected in conventional solution procedures. Some type of an equation for length scale development was found to be necessary for successful computation of highly nonsimilar flow regions such as jet or wake development from thick wall flows

    Mean flow field and surface heating produced by unequal shock interactions at hypersonic speeds

    Get PDF
    Mean velocity profiles were measured in a free shear layer produced by the interaction of two unequal strength shock waves at hypersonic free-stream Mach numbers. Measurements were made over a unit Reynolds number range of 3,770,000 per meter to 17,400,000 per meter based on the flow on the high velocity side of the shear layer. The variation in measured spreading parameters with Mach number for the fully developed flows is consistent with the trend of the available zero velocity ratio data when the Mach numbers for the data given in this study are taken to be characteristic Mach numbers based on the velocity difference across the mixing layer. Surface measurements in the shear-layer attachment region of the blunt-body model indicate peak local heating and static pressure consistent with other published data. Transition Reynolds numbers were found to be significantly lower than those found in previous data

    Comments on the role of diagonal dominance in implicit difference methods

    Get PDF
    Numerical tests were made for a model of the Navier-Stokes equations using a second-order accurate implicit scheme which guarantees diagonal dominance. The results suggest that the failure of implicit methods using large marching steps may not always be attributed to the lack of diagonal dominance in the coefficient matrix. In some cases the failure may be caused by a nonlinear instability associated with the solution method

    Computation of laminar viscous-inviscid interactions in high-speed internal flows

    Get PDF
    A review is given of computations for a series of nominally 2-D laminar viscous-inviscid interactions. Comparisons were made with detailed experimental shock tunnel results. The shock wave boundary layer interactions considered were induced by a compression ramp in one case and by an externally generated incident shock in the second case. In general, good agreement was reached between the grid refined calculations and experiment for the incipient and small separation conditions. For the highly separated flow, 3-D calculations which included the finite span effects of the experiment were required in order to obtain agreement with the data

    Cavitation damage in liquid metals technical progress report no. 467-3, 1 apr. - 31 may 1965

    Get PDF
    Cavitation damage resistance of refractory alloys in high temperature liquid sodiu

    Cavitation damage in liquid metals technical progress report, 1 jan. - 31 mar. 1965

    Get PDF
    Temperature effect on rate of cavitation damage of 316 stainless steel in pure liquid sodium at temperatures up to 1500 deg
    corecore