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COMMENTS ON THE ROLE OF DIAGONAL DOMINANCE

IN IMPLICIT DIFFERENCE METHODS

By David H. Rudy and Richard S. Hirsh

Langley Research Center
R

SUMMARY

Numerical tests were made for a model of the Navier-Stokes equations
using a second-order accurate implicit scheme which guarantees diagonal
dominance. The results of these tests suggest that the failure of implicit
methods using large marching steps may not always be attributed to the lack of
diagonal dominance in the coefficient matrix. In some cases the failure may

be caused by a nonlinear instability associated with the solution method.
INTRODUCTION

Implicit finite difference methods in general offer the major advantage of
unconditional stability (with respect to the step size in the marching direc-
tion) over explicit methods. This advantage is offset somewhat by the need to
solve a system of simultaneous algebraic equations during each marching step.
However, when central differences are used, the coefficient matrix becomes
tridiagonal in form and can be inverted much more rapidly than a full matrix.
Consequently, to gain a computaticnal time advantage, implicit marching steps
need only to be a factor of four or five times larger than the maximum step
size allowed in an explicit method. In many cases, though, large marching
steps cause the coefficient matrix to lose diggonal dominance, a sufficient,

but not necessary, condition for convergence of the matrix inversion. Without



2
diagonal dominance, roundoff error can accumulate in the matrix inversion and
destroy the solution. For Burgers' equation (a model of the Navier-Stokes
equations), Hirsh and Rudy (Ref. 1) found that diagonal dominance could be
maintained for any size marching steps if the cell Reynolds number was 2 or
less. In the present paper results are given for numerical tests made with
the second-order accurate scheme of Khosla-Rubin (Ref. 2) which maintains
diagonal dominance for all cell Reynolds numbers and marching step sizes.
The results of these tests suggest that the failure of implicit methods using

large marching steps may not always be caused by the lack of diagonal dominance.

SYMBOLS
8 = ug - U
A,B,C,D matrix coefficients in egs. (3) and (6)
C Courant number, E%E
D! = (u?+l - 2u? + u?_l)/(EAX)
R, cell Reynolds number, |a|Ax/v
u velocity
U wave speed
Ax spatial coordinate mesh spacing
At marching direction step size
€ convergence criterion
\Y viscosity
Subscripts
i index denoting grid point spatial location
max | maximum value

x,t derivative with respect to x-direction, time




Superscripts

n index denoting time level
DESCRIPTION OF NUMERICAL TESTS

The numerical tests of the Khosla-Rubin scheme were first made using

the nonconservative form of Burgers' equation
u, +au = vu (1)

(where a can be a function of u, t, and x) for several cases presented in
Ref. 1 where diagonal dominance was lost. The difference form of eq. (1)

becomes, using the Khosla-Rubin scheme (ref. 2),

n n+l n+l n
y -y (e - legD) | ugy) -y ) (g
At 2 Bx 2hx

n n
- 2u, + u,
i 1—1)

n+l n+l n
+ -
) (a lail) (u; u; 7)) . (4

2 Ax 2Ax

)

n n
ks T 5

Vv n+l 2un+l + n+l) (2)
(Ax)2

. - X u.
i+l i i-1

where &y = u? - U and U is the steady-state wave speed. Thus,
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The bouhdary conditions were taken to be:

1.0, at x = =5

u(x,t)

u(x,t)

0, at x = +5

Fifty-one equally spaced mesh points were used with Ax = 0.2. The wave speed
U was 0.5. A linear initiasl velocity distribution between the boundary
points was used. The Thomas algorithm was employed to solve the resultant set
of simultaneous algebraic equations at each time step. The solution was
assumed to have reached a steady-state when the meximum change in u Dbetween

time steps was less than some specified value ¢e.
RESULTS AND DISCUSSION

Nonconservative Form of Nonlinear Burgers' Equation
At

For v = 1/2k (Rc = 2.4) and %uGcEZI = 10, the solutions converged
using the Khosla-Rubin scheme in less than 50 steps to the steady-state

solution presented in Ref. 1 for ¢ = 10-5. The solution is shown in

Figure 1. In the calculation, the nonlinear coefficient, ai, was lagged one

time-step and no iteration was performed at each time step. The solution was



5

then continued further in an attempt to satisfy € = 10—10. After

approximately 30 more steps the solution began to diverge rapidly from the
previous result. (Converged results were obtained for € = 10—10 and large
values of cmax with the usuel central difference form.) Similar behavior
was otserved for C = 0.9. For C = 0,1, the solution converged in Tkl
max max )

steps for € = 10_10. In all cases the coefficient matrix is always diagonally
dominant. All test results given in the paper are summarized in Table I.

An effect of this instability in the solution can be seen in figure 2

where

-2
ui+l .ui + ui—l,
=| 2Ax |

|} |

is plotted for i = 26 (the midpoint) as a function of the number of time steps
for Cmax = 0.1, 0.9 and 10.0. This term, i, is the quantity added to the
first-order (upwind) differencing of u, in the Khosla-Rubin modification and
appears on the right-hand side of (3), not as a coefficient of the unknowns.
As shown in figure 2, Di=26 remains small for Cmax = 0.1; however, for
Cmax = 0.9 and 10.0, the term grows rapidly, and large errors appear in u.

Two types of iteration of the nonlinear term‘were also investigated for
the nonconservative form of Burgers' equation. The first of these was the
use of multiple iterations at each time step in the procedure previously
described. The case with v = 1/24 and Cmax = 0.9 was run with a fixed

number of iterations to update a, at each time step. However, the solutions

i
again rapidly diverged with 2, L, or 8 iteralions per time step.
The second form of iteration used was Newton iteration (ref. 3). In this

technique
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where m 1is the iteration index a“ each time step. Equation (5) is substi-

tuted into equation (2) to give tridiagonal equations of the form

D (6)

A16u1-1 + Biﬁui + 015“1+1 = D,

where, for ug <1/2
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In all cases,
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It should be noted that tie~ convective derivative in Di has been evaluated
using a central difference with values at the last iterate of the present time
step rather than with the usual Khosla-Rubin term. This modification was
found to be necessary to maintain the asymmetry of tle solution about the
midpoint.

Calculations were made in which the solution wa: iterated at each time
step until the difference between iterations was less than 10—10. (The Newton
procedure could also be performed with no multiple iteration at each time
step, but such an approach was not used in the present investigation.) The
steady-state convergence criterion was again € = 10'10. Converged solutions

were obtained for v = 1/2k and Cmax = 0.9. However, the solution diverged

when C was increased to 10.
muXx

Linear Burgers' Equation
To further demonstrate that the observed divergence is related to the
nonlinear term, tests were also made using & li.iear Burgers' equation

u, + 8u = v (1)

t xx

where & 1is a constant. Th:2 boundary conditions were again taken to be




u(x,t) = 1.0 at x = 5

u(x,t) =0 at x = +5

For this solution domain, the analytical solution is

(8)

where w = a/v. For v = 1/2L4, equation (8) indicates that an extremely steep
gradient exists which could not be resolved with the coarse Ax = 0.2 grid;
therefcre, v = 1 ﬁas used with values of a chosen such that Rc > 2. Steady
state solutions are shown in figure 3 for two cases, Rc = 2.4 and Rc = 10,

Convergence was obtained in both cases for ¢ = 10730

for values of C up
to 1000. The "wiggles" in the solution are not roundoff error but are the

exact algebraic solution of the difference equations. -

Conservative Form of Nonlinear Burgers' Equation
Another way to treaut the nonlinear term in equation (1) is to difference

the conservation form of Burgers' equation, i.e.,

-u), = wu (9)

The finite difference form of equation (9) is given by equation (2) where now
1
a, = -é-(ui+l Yu 1) with Khosla-Rubin differencing.
Calculations were made in which a, was lagged one time step with no
multiple iteration performed at each time step. The steady-state convergence

criterion was again € = 10-10. For v = 1/2k4, converged solutions were
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obtained for all values of C _ used (0.9, 10, 100, and 1000). The solu-
tions are shown in figure 4L, For v = 1/L8 (Rc,max = },8), converged solutions
were obtained for C = 1000. When Vv was reduced to 1/96 (Rc,max = 9.6),
solutions were obtained for Cmax = 0.9, but could not be obtained for
Crax ™ 10. The steady-state solut.ons for v = 1/L8 and 1/96 are also shown
on figure 4. No other iteration schemes were tested with the Khosla-Rubin
method.

Cases were also run in which a central difference was used for the con-
vective term. (The procedure of ref. 1 was used with 8 = %—(ui+l tu ¢ 1)
lagged one time step and without multiple iteration at each time step.) The
coefficient matrix is not diagonally dominapt when Rc,max > 2 unless

Cmax < 1; however, converged solutions were obtained for v = 1/2i (Rc,max = 2.4)

and for v = 1/48 (R = 4.8) with values of C up to 1000. Unlike the

¢ ,max max

Khosla-Rubin calculation for v = 1/96, the solution converged for Cmax = 10,
although it diverged when Cmax was 100.

Thus, for Burgers' equation with small values of v, the use of conserva-

tion form is appropriate. Since the solutions in such cases are steep waves,

this result is not unexpected.
CONCLUDING REMARKS

In previously reported implicit calculations of the nonlinear Burgers'
equation (in nonconservative form) using central finite differences for
spatial derivatives, solutions could not te obtained in many (but not all)
cases when the cell Reynolds number was greater than 2. This failure was
attributed to the loss of diagonal dominance in the coefficient matrix which

occurs when Courant numbers greater than one are used for calculations in which
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the maximum cell Reynolds number exceeds 2. The Khosla-Rubin modification,
which gives an unconditionally diagonally dominant coefficient matrix, was
expected to give stable solutions for these cases. Numerical tests, however,
have shown that this method is unstable for cases in vhich the maximum cell
Reynolds number is greater than 2; i.e., for cases in which "wiggles" are
irherent in the solution to the difference equation, when the Courant number
is greater than 1. When the Courant number wes less than 1, stable so_utions
could be obteined for some values of cell Reynolds number, but the maximum
allowable time step was found to be dependent upon th~ iteration technique
used. For the linear Purgers' equation, on the other rund, no instability
was found even when "wigglec" were present. These rc:cults suggest that the
failures may be the result of a nonlinear instability.

In the previous numerical tests with central differencing, n: cases vere
found in which converged solutions could not be obtained when the maximum
cell Reynolds number was 2 or less. However, wvhen the maximum cell Reynolds
number was greater than 2, solutions could not bte obtained in some cases
even vhen the time step was small enough to give a diagorally dominant
coefficient matrix. Here again the feilure may have been the result of a
nonlinear instability.

This particular instability can be overcome for many cases by using the
conservative form of Burgers' equation for both the central difference and
Khosla-Rubin metbnds. The present study did not, however, attempt to
determine whether upper limits on the maximum cell Reynolds number and Courant

number exist for the conservative form.
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Figure 1l.- Steady-state solution for nonconservative form

of nonlinear Burgers' equation, v = 1/2k, R max

= 2.4,
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Figure 2.~ Growth of D' term at midpoint of solution domain.
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Figure 3.- Steady-state solution of linear Burgers' equations.
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Figure 4.- Steady-state solution for conservative form of
nonlinear Burgers' equation.



	GeneralDisclaimer.pdf
	0015A03.pdf
	0015A03_.pdf
	0015A04.pdf
	0015A05.pdf
	0015A06.pdf
	0015A07.pdf
	0015A08.pdf
	0015A09.pdf
	0015A10.pdf
	0015A11.pdf
	0015A12.pdf
	0015A13.pdf
	0015A14.pdf
	0015A14a.pdf
	0015B02.pdf
	0015B03.pdf
	0015B04.pdf
	0015B05.pdf
	0015B06.pdf



