68 research outputs found

    PCV21: VARIATION IN MEDICAL RESOURCE UTILIZATION IN THE MANAGEMENT OF PULMONARY EMBOLISM

    Get PDF

    Quantifying the burden of rhodesiense sleeping sickness in Urambo district, Tanzania

    Get PDF
    Sleeping sickness (human African trypanosomiasis - HAT) is a disease transmitted by tsetse flies and is always fatal if left untreated. The disease occurs in foci affecting poor communities with limited access to health service provision and as such the disease is often left undiagnosed, mistaken for more common afflictions. Even if diagnosed, sleeping sickness is costly to treat, both for health services and patients and their families in terms of costs of diagnosis, transport, hospital care, and the prolonged period of convalescence. Here we estimate the health burden of the acute form T. b. rhodesiense sleeping sickness in Urambo District, Tanzania in terms of Disability Adjusted Life Years (DALYs), the yardstick commonly used by policy makers to prioritize disease management practices, representing a year of healthy life lost to disease. In this single district, the burden of the disease over one year was estimated at 979 DALYs and the estimated monetary costs to health services for the 143 treated patients at US11,841andtothepatientsthemselvesatUS 11,841 and to the patients themselves at US 3,673 for direct medical costs and US$ 9,781 for indirect non-medical costs. Sleeping sickness thus places a considerable burden on the affected rural communities and health services

    Dose optimization of piperacillin/tazobactam in critically ill children

    Get PDF
    Objectives: To characterize the population pharmacokinetics of piperacillin and tazobactam in critically ill infants and children, in order to develop an evidence-based dosing regimen. / Patients and methods: This pharmacokinetic study enrolled patients admitted to the paediatric ICU for whom intravenous piperacillin/tazobactam (8:1 ratio) was indicated (75 mg/kg every 6 h based on piperacillin). Piperacillin/tazobactam concentrations were measured by an LC–MS/MS method. Pharmacokinetic data were analysed using non-linear mixed effects modelling. / Results: Piperacillin and tazobactam blood samples were collected from 47 patients (median age 2.83 years; range 2 months to 15 years). Piperacillin and tazobactam disposition was best described by a two-compartment model that included allometric scaling and a maturation function to account for the effect of growth and age. Mean clearance estimates for piperacillin and tazobactam were 4.00 and 3.01 L/h for a child of 14 kg. Monte Carlo simulations showed that an intermittent infusion of 75 mg/kg (based on piperacillin) every 4 h over 2 h, 100 mg/kg every 4 h given over 1 h or a loading dose of 75 mg/kg followed by a continuous infusion of 300 mg/kg/24 h were the minimal requirements to achieve the therapeutic targets for piperacillin (60% fT>MIC >16 mg/L). / Conclusions: Standard intermittent dosing regimens do not ensure optimal piperacillin/tazobactam exposure in critically ill patients, thereby risking treatment failure. The use of a loading dose followed by a continuous infusion is recommended for treatment of severe infections in children >2 months of age

    Integrating innovations:a qualitative analysis of referral non-completion among rapid diagnostic test-positive patients in Uganda's human African trypanosomiasis elimination programme

    Get PDF
    BACKGROUND: The recent development of rapid diagnostic tests (RDTs) for human African trypanosomiasis (HAT) enables elimination programmes to decentralise serological screening services to frontline health facilities. However, patients must still undertake multiple onwards referral steps to either be confirmed or discounted as cases. Accurate surveillance thus relies not only on the performance of diagnostic technologies but also on referral support structures and patient decisions. This study explored why some RDT-positive suspects failed to complete the diagnostic referral process in West Nile, Uganda. METHODS: Between August 2013 and June 2015, 85% (295/346) people who screened RDT-positive were examined by microscopy at least once; 10 cases were detected. We interviewed 20 RDT-positive suspects who had not completed referral (16 who had not presented for their first microscopy examination, and 4 who had not returned for a second to dismiss them as cases after receiving discordant [RDT-positive, but microscopy-negative results]). Interviews were analysed thematically to examine experiences of each step of the referral process. RESULTS: Poor provider communication about HAT RDT results helped explain non-completion of referrals in our sample. Most patients were unaware they were tested for HAT until receiving results, and some did not know they had screened positive. While HAT testing and treatment is free, anticipated costs for transportation and ancillary health services fees deterred many. Most expected a positive RDT result would lead to HAT treatment. RDT results that failed to provide a definitive diagnosis without further testing led some to question the expertise of health workers. For the four individuals who missed their second examination, complying with repeat referral requests was less attractive when no alternative diagnostic advice or treatment was given. CONCLUSIONS: An RDT-based surveillance strategy that relies on referral through all levels of the health system is inevitably subject to its limitations. In Uganda, a key structural weakness was poor provider communication about the possibility of discordant HAT test results, which is the most common outcome for serological RDT suspects in a HAT elimination programme. Patient misunderstanding of referral rationale risks harming trust in the whole system and should be addressed in elimination programmes

    Comparative genomics of drug resistance in <i>Trypanosoma brucei rhodesiense</i>

    Get PDF
    Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine

    Diagnostic Accuracy of Molecular Amplification Tests for Human African Trypanosomiasis—Systematic Review

    Get PDF
    A range of molecular amplification techniques has been developed for the diagnosis of HAT, with polymerase chain reaction (PCR) at the forefront. As laboratory strengthening in endemic areas increases, it is expected that the applicability of molecular tests will increase. However, careful evaluation of these tests against the current reference standard, microscopy, must precede implementation. Therefore, we have investigated the published diagnostic accuracy of molecular amplification tests for HAT compared to microscopy for both initial diagnosis as well as for disease staging

    Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues

    Get PDF
    This work was supported by the Leverhulme Trust (Grant number RL2012-025). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1 , a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3 , a diazirine- and alkyne-containing bi-functional photo-affinity probe analogue of our lead B-THP-T, compound 1 , to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model.Publisher PDFPeer reviewe

    Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Get PDF
    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed

    TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways

    Get PDF
    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin
    corecore