1,944 research outputs found

    The Reversal Intervention for Metabolic Syndrome (TRIMS) study: rationale, design, and baseline data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent attention has focused on strategies to combat the forecast epidemic of type-2 diabetes (T2DM) and its major vascular sequelae. Metabolic syndrome (MetS) comprises a constellation of factors that increase the risk of cardiovascular disease (CVD) and T2DM. Our study aims to develop a structured self-management education programme for people with MetS, which includes management of cardiovascular and diabetes risk factors, and to determine its impact. This paper describes the rationale and design of the TRIMS study, including intervention development, and presents baseline data.</p> <p>Methods</p> <p>Subjects recruited from a mixed-ethnic population with MetS were randomised to intervention or control arms. The intervention arm received structured group education based on robust psychological theories and current evidence. The control group received routine care. Follow-up data will be collected at 6 and 12 months. The primary outcome measure will be reversal of metabolic syndrome in the intervention group subjects compared to controls at 12 months follow-up.</p> <p>Results</p> <p>82 participants (44% male, 22% South Asian) were recruited between November 2009 and July 2010. Baseline characteristics were similar for both the intervention (n = 42) and control groups (n = 40). Median age was 63 years (IQR 57 - 67), mean waist size 106 cm (SD ± 11), and prescribing of statins and anti-hypertensives was 51% in each case.</p> <p>Conclusion</p> <p>Results will provide information on changes in diabetes and CVD risk factors and help to inform primary prevention strategies in people with MetS from varied ethnic backgrounds who are at high risk of developing T2DM and CVD. Information gathered in relation to the programme's acceptability and effectiveness in a multi-ethnic population would ensure that our results are widely applicable.</p> <p>Trial registration</p> <p>The study is registered at ClinicalTrials.gov, study identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01043770">NCT01043770</a>.</p

    C2 and CFB Genes in Age-Related Maculopathy and Joint Action with CFH and LOC387715 Genes

    Get PDF
    Background: Age-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM. Methods/Principal Findings: We investigated two SNPs in C2 and two in CFB in independent case-control and family cohorts of white subjects and found rs547154, an intronic SNP in C2, to be significantly associated with ARM in both our case-control (P-value 0.00007) and family data (P-value 0.00001). Logistic regression analysis suggested that accounting for the effect at this locus significantly (P-value 0.002) improves the fit of a genetic risk model of CFH and LOC387715 effects only. Modeling with the generalized multifactor dimensionality reduction method showed that adding C2 to the two-factor model of CFH and LOC387715 increases the sensitivity (from 63% to 73%). However, the balanced accuracy increases only from 71% to 72%, and the specificity decreases from 80% to 72%. Conclusions/Significance: C2/CFB significantly influences AMD susceptibility and although accounting for effects at this locus does not dramatically increase the overall accuracy of the genetic risk model, the improvement over the CFH-LOC387715 model is statistically significant. © 2008 Jakobsdottir et al

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP\delta_{CP}. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter.Comment: Contribution to Snowmass 202
    • 

    corecore