285 research outputs found

    A threshold phenomenon for embeddings of H0mH^m_0 into Orlicz spaces

    Full text link
    We consider a sequence of positive smooth critical points of the Adams-Moser-Trudinger embedding of H0mH^m_0 into Orlicz spaces. We study its concentration-compactness behavior and show that if the sequence is not precompact, then the liminf of the H0mH^m_0-norms of the functions is greater than or equal to a positive geometric constant.Comment: 14 Page

    Data-adaptive harmonic spectra and multilayer Stuart-Landau models

    Full text link
    Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency, and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey furthermore a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled---provided the decay of temporal correlations is sufficiently well-resolved---within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise, are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.Comment: 26 pages, double columns; 15 figure

    Traveling waves for nonlinear Schr\"odinger equations with nonzero conditions at infinity, II

    Full text link
    We prove the existence of nontrivial finite energy traveling waves for a large class of nonlinear Schr\"odinger equations with nonzero conditions at infinity (includindg the Gross-Pitaevskii and the so-called "cubic-quintic" equations) in space dimension N≥2 N \geq 2. We show that minimization of the energy at fixed momentum can be used whenever the associated nonlinear potential is nonnegative and it gives a set of orbitally stable traveling waves, while minimization of the action at constant kinetic energy can be used in all cases. We also explore the relationship between the families of traveling waves obtained by different methods and we prove a sharp nonexistence result for traveling waves with small energy.Comment: Final version, accepted for publication in the {\it Archive for Rational Mechanics and Analysis.} The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-017-1131-

    Finite-dimensional global and exponential attractors for the reaction-diffusion problem with an obstacle potential

    Full text link
    A reaction-diffusion problem with an obstacle potential is considered in a bounded domain of RN\R^N. Under the assumption that the obstacle \K is a closed convex and bounded subset of Rn\mathbb{R}^n with smooth boundary or it is a closed nn-dimensional simplex, we prove that the long-time behavior of the solution semigroup associated with this problem can be described in terms of an exponential attractor. In particular, the latter means that the fractal dimension of the associated global attractor is also finite

    Global Well-posedness of an Inviscid Three-dimensional Pseudo-Hasegawa-Mima Model

    Full text link
    The three-dimensional inviscid Hasegawa-Mima model is one of the fundamental models that describe plasma turbulence. The model also appears as a simplified reduced Rayleigh-B\'enard convection model. The mathematical analysis the Hasegawa-Mima equation is challenging due to the absence of any smoothing viscous terms, as well as to the presence of an analogue of the vortex stretching terms. In this paper, we introduce and study a model which is inspired by the inviscid Hasegawa-Mima model, which we call a pseudo-Hasegawa-Mima model. The introduced model is easier to investigate analytically than the original inviscid Hasegawa-Mima model, as it has a nicer mathematical structure. The resemblance between this model and the Euler equations of inviscid incompressible fluids inspired us to adapt the techniques and ideas introduced for the two-dimensional and the three-dimensional Euler equations to prove the global existence and uniqueness of solutions for our model. Moreover, we prove the continuous dependence on initial data of solutions for the pseudo-Hasegawa-Mima model. These are the first results on existence and uniqueness of solutions for a model that is related to the three-dimensional inviscid Hasegawa-Mima equations

    A note on maximal estimates for stochastic convolutions

    Get PDF
    In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.Comment: Minor correction

    Recent Advances Concerning Certain Class of Geophysical Flows

    Full text link
    This paper is devoted to reviewing several recent developments concerning certain class of geophysical models, including the primitive equations (PEs) of atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for large-scale oceanic and atmospheric dynamics are derived from the Navier-Stokes equations coupled to the heat convection by adopting the Boussinesq and hydrostatic approximations, while the tropical atmosphere model considered here is a nonlinear interaction system between the barotropic mode and the first baroclinic mode of the tropical atmosphere with moisture. We are mainly concerned with the global well-posedness of strong solutions to these systems, with full or partial viscosity, as well as certain singular perturbation small parameter limits related to these systems, including the small aspect ratio limit from the Navier-Stokes equations to the PEs, and a small relaxation-parameter in the tropical atmosphere model. These limits provide a rigorous justification to the hydrostatic balance in the PEs, and to the relaxation limit of the tropical atmosphere model, respectively. Some conditional uniqueness of weak solutions, and the global well-posedness of weak solutions with certain class of discontinuous initial data, to the PEs are also presented.Comment: arXiv admin note: text overlap with arXiv:1507.0523

    Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below

    Get PDF
    This paper is devoted to a deeper understanding of the heat flow and to the refinement of calculus tools on metric measure spaces (X,d,m). Our main results are: - A general study of the relations between the Hopf-Lax semigroup and Hamilton-Jacobi equation in metric spaces (X,d). - The equivalence of the heat flow in L^2(X,m) generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures P(X). - The proof of density in energy of Lipschitz functions in the Sobolev space W^{1,2}(X,d,m). - A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem. Our results apply in particular to spaces satisfying Ricci curvature bounds in the sense of Lott & Villani [30] and Sturm [39,40], and require neither the doubling property nor the validity of the local Poincar\'e inequality.Comment: Minor typos corrected and many small improvements added. Lemma 2.4, Lemma 2.10, Prop. 5.7, Rem. 5.8, Thm. 6.3 added. Rem. 4.7, Prop. 4.8, Prop. 4.15 and Thm 4.16 augmented/reenforced. Proof of Thm. 4.16 and Lemma 9.6 simplified. Thm. 8.6 corrected. A simpler axiomatization of weak gradients, still equivalent to all other ones, has been propose

    Deriving effective models for multiscale systems via evolutionary GammaGamma-convergence

    Get PDF
    We discuss possible extensions of the recently established theory of evolutionary Gamma convergence for gradient systems to nonlinear dynamical systems obtained by perturbation of a gradient systems. Thus, it is possible to derive effective equations for pattern forming systems with multiple scales. Our applications include homogenization of reaction-diffusion systems, the justification of amplitude equations for Turing instabilities, and the limit from pure diffusion to reaction-diffusion. This is achieved by generalizing the Gamma-limit approaches based on the energy-dissipation principle or the evolutionary variational estimate

    Stability of flows associated to gradient vector fields and convergence of iterated transport maps

    Get PDF
    In this paper we address the problem of stability of flows associated to a sequence of vector fields under minimal regularity requirements on the limit vector field, that is supposed to be a gradient. We apply this stability result to show the convergence of iterated compositions of optimal transport maps arising in the implicit time discretization (with respect to the Wasserstein distance) of nonlinear evolution equations of a diffusion type. Finally, we use these convergence results to study the gradient flow of a particular class of polyconvex functionals recently considered by Gangbo, Evans ans Savin. We solve some open problems raised in their paper and obtain existence and uniqueness of solutions under weaker regularity requirements and with no upper bound on the jacobian determinant of the initial datum
    • …
    corecore