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Abstract

In this paper we address the problem of stability of flows associated to a sequence of vector
fields under minimal regularity requirements on the limit vector field, that is supposed to be
a gradient.

We apply this stability result to show the convergence of iterated compositions of optimal
transport maps arising in the implicit time discretization (with respect to the Wasserstein
distance) of nonlinear evolution equations of a diffusion type.

Finally, we use these convergence results to study the gradient flow of a particular class
of polyconvex functionals recently considered by Gangbo, Evans ans Savin. We solve some
open problems raised in their paper and obtain existence and uniqueness of solutions under
weaker regularity requirements and with no upper bound on the jacobian determinant of the
initial datum.
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5 An application to gradient flows of polyconvex functionals 34

1 Introduction

Let us assume that we are given a functional φ defined on P2(V ), the space of probability
measures in a open set V ⊂ Rd with finite quadratic moments, and let us consider the variational
formulation of the (Euler) implicit time discretization of the gradient flow of φ with respect
to the Kantorovich-Rubinstein-Wasserstein metric W2: namely, given a time step τ > 0
and an initial datum µ̄, we consider the sequence (µk) obtained by the recursive minimization
of

µ 7→ 1
2τ
W 2

2 (µ, µk−1) + φ(µ), k = 1, 2, · · · , (1.1)

with the initial condition µ0 = µ̄ (in this introduction we disregard, to keep the exposition as
much simple as possible, the existence issue), and the related piecewise constant interpolant
M τ,t := µ[t/τ ], t > 0, ([t/τ ] denotes the integer part of t/τ) of the values µk on a uniform grid
{0, τ, 2τ, · · · , kτ, · · · } of step size τ . The convergence of M τ to a continuous solution as τ ↓ 0
has attracted a lot of attention in recent years, see the references, starting from [28], mentioned
in more detail after the statement of Theorem 4.7.
Under quite general assumptions on φ, it is possible to prove the existence of the limit µt =
limτ↓0M τ,t in P2(V ) for every time t ≥ 0: the evolution of the limit curve is governed by a
velocity vector field vt ∈ L2(µt; Rd) linked to µt itself through a nonlinear relation depending
on the particular form of the functional φ, which we (formally, at this level) denote by with
−vt ∈ ∂φ(µt). It turns out that vt is tangent, according to Otto’s calculus, i.e. it is orthogonal
in L2(µt; Rd) to vector fields w such that wµt is divergence-free (or, equivalently, vt belongs to
the closure in L2(µt; Rd) of gradients of smooth maps) and the resulting evolution system reads
as

∂

∂t
µt +Dx · (vtµt) = 0 in D ′((0, T )× V

)
, −vt ∈ ∂φ(µt). (1.2)

Here we consider the convergence of the following discrete quantities: assuming that all the
measures µk are absolutely continuous with respect to the Lebesgue one L d, we denote by tk

the optimal transport map between µk and µk+1 and we introduce the iterated transport map

T k := tk−1 ◦ tk−2 ◦ · · · ◦ t1 ◦ t0,

mapping µ̄ = µ0 to µk. We want to study the convergence of the maps T τ,t := T [t/τ ] as τ ↓ 0.
A simple formal argument shows that their limit should be Xt, where Xt is the flow associated
to the vectorfield vt arising in (1.2), i.e.

d

dt
Xt(x) = vt (Xt(x)),

X0(x) = x.
(1.3)

In order to make this intuition precise, and to show the convergence result, we use several
auxiliary results, all of them with an independent interest: the first one, proved in §3, is a

2



general stability result for flows associated to vectorfields in the same spirit of the results proved
in [20], [3] and based in particular on the Young measure technique in the space of (absolutely)
continuous maps adopted in [3] (see also the Lecture Notes [2]). The main new feature here,
compared to the previous results, is that we use the information that the limit vectorfield v is
a tangent vectorfield, while no regularity is required either on the approximating vectorfields or
on the approximating flows.

In §4 we recall some results from [6] (see in particular Theorem 4.7) relative to the con-
vergence of the discrete Euler solutions M τ to the continuous one µ, which show that the
stability theorem can be applied in many cases, depending on the regularity of the initial data.
In particular we show in Proposition 4.8 that the convergence scheme works for the gradient
flow of the internal energy functional

φ(µ) :=
∫

V
ψ(β) dy, with µ = βL d V , (1.4)

even without McCann’s displacement convexity assumption, under a suitable boundedness
assumptions on β. In this case it is well known that the gradient flow of φ corresponds to a non-
linear diffusion equation with homogeneous Neumann boundary conditions, see (4.70). In order
to achieve more general results we study also the backward problem, namely the convergence of
(T τ )−1, which seems to be less dependent from the regularity of the initial data.

The convergence of the discrete transport flow T τ may seem an academic question, but this
is not the case. It appears in a recent and very enlightening paper by Evans, Gangbo and
Savin [22], where the authors study the gradient flow with respect to the L2 metric of the
polyconvex functional

I(u) :=
∫

U
Φ(detDu) dx,

and build a solution by purely differential methods. In that paper the authors raise the problem
of the convergence of the (variational formulation of the) Euler’s implicit scheme, resulting in
the recursive minimization (analogous to (1.1)) of the functional

u 7→ 1
2τ
‖u− uk−1‖2

L2(U ;Rd) + I(u), k = 1, 2, · · · (1.5)

among the smooth diffeomorphisms mapping a reference domain U ⊂ Rd onto a given target
V ⊂ Rd. It turns out that (1.5) and (1.1) are strictly related, due to the fact that a change of
variables gives

I(u) =
∫

V

Φ(detDu)
detDu

◦ u−1 dy =
∫

V
ψ

(
1

detDu
◦ u−1

)
dy

with ψ(s) = sΦ(1/s). Notice that the scalar quantity [1/detDu] ◦ u−1 can be interpreted as
the density β[u] of the push forward of L d U under the map u, so that I(u) reduces to the
“scalar” functional φ in (1.4).

Denoting by uτ,t := u[t/τ ] the interpolant of the discrete solution (uk) to (1.5), Gangbo,
Evans and Savin show that uτ is indeed linked to the initial datum ū by an iterated composition
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of optimal transport maps, whose convergence as τ ↓ 0 can be studied by the methods developed
in the present paper, see in particular Theorem 5.7.

We also extend the notion of solution of the gradient flow of I to the case when detDu is
possibly unbounded from above, thus allowing for degeneracies in β = β[u]. At the same time,
we allow for general domains V , not necessarily bounded or coinciding with the support of the
initial datum β̄ = β[ū], so that when this support is strictly contained in V , the domain V
plays the rôle of an ostacle. Under mild regularity assumptions on β̄ we show in Theorem 5.4
that still a unique solution can be built by purely differential methods; nevertheless, we show in
Theorem 5.7 that this solution is still the limit of the discrete Euler ones.

Concluding this introduction, we notice that this is a nice model problem where the strengths
and the weaknesses of the differential and of the variational methods can be compared. In this
perspective, it is worth mentioning that in De Giorgi’s variational approach to gradient flows
(even in metric spaces), a fundamental rôle is played by the so called descending slopes, namely

|∂I|(u) := lim sup
‖v−u‖2→0

[I(u)− I(v)]+

‖u− v‖
, |∂φ|(β) := lim sup

W2(ρ,β)→0

[φ(β)− φ(ρ)]+

W2(β, ρ)
.

and by the “upper gradient” properties of their lower semicontinuous envelopes (see [6, Chap.
2], Def. 4.5, and Thm. 4.7). As we will discuss in Remark 5.6, one can obtain that

|∂I|(u) = |∂φ|(β) if β = β[u], I(u) = φ(β) < +∞, (1.6)

and, at least when u is regular, V is convex, and the map s 7→ Φ(sd) is convex and nonincreasing,
one can check that

|∂I|(u) =
∥∥div

(
Φ′(detDu) cofDu

)∥∥
2
. (1.7)

Introducing the function F defined on d× d-matrices

F (A) := Φ(det A) so that I(u) =
∫

U
F (Du) dx, (1.8)

(1.7) takes the more familiar form

|∂I|(u) = ‖divDF (Du)‖2, (1.9)

which corresponds to the L2-norm of the function which represents the first variation of I. It
is considerably easier to obtain (1.9) and its lower semicontinuity when F is convex, which
in particular forces DF to be monotone. In the present case (1.8), the lower semicontinuous
envelope of |∂I| can be expressed through the “ad hoc” representation formula (1.6).

For general polyconvex (but not convex) functionals, even in a smooth and coercive setting,
it would be interesting to find necessary/sufficient conditions for the validity of equality in (1.9),
or to compute explicitly the slope functional.
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2 Notation and preliminary results

We start by recalling some basic facts in Measure Theory. Let X, Y be Polish spaces, i.e.
topological spaces whose topology is induced by a complete and separable metric (open subsets
of complete and separable metric spaces, with the topology induced by the metric, are still
Polish). We endow a Polish space X with the corresponding Borel σ-algebra and denote by
P(X) (resp. M (X), M+(X)) the family of Borel probability (resp. real, nonnegative real)
measures in X. ~µ ↔ (µα)dα=1 will denote a Rd-valued vector measure in

[
M (X)

]d, identified
with a d-tuple of real measures µα ∈ M (X).
We will denote by i : X → X the identity map.

Definition 2.1 (Push-forward) Let ~µ be a Rd-valued measure in X with finite total variation
and let f : X → Y be a Borel map. The push-forward f#~µ is the Rd-valued measure in Y defined
by f#~µ(B) = ~µ(f−1(B)) for any Borel set B ⊂ Y .

It is easy to check that f#~µ has finite total variation as well and that |f#~µ| ≤ f#|~µ|. An
elementary approximation by simple functions shows the chain rule∫

Y
g df#~µ =

∫
X
g ◦ f d~µ (2.1)

for any bounded Borel function (or even either nonnegative or nonpositive, and R-valued, in the
case d = 1 and ~µ = µ ∈ P(X)) g : Y → R.

Definition 2.2 (Narrow convergence and compactness) Narrow (sequential) convergence
in P(X) is the convergence induced by the duality with Cb(X), the space of continuous and
bounded functions in X. By Prokhorov theorem, a family F in P(X) is sequentially relatively
compact with respect to the narrow convergence if and only if it is tight, i.e. for any ε > 0 there
exists a compact set K ⊂ X such that µ(X \K) < ε for any µ ∈ F .

In this paper we use only the “easy” implication in Prokhorov theorem, namely that any tight
family is sequentially relatively compact. It is immediate to check that a sufficient condition
for tightness of a family F of probability measures is the existence of a coercive functional
Ψ : X → [0,+∞] (i.e. a functional such that its sublevel sets {Ψ ≤ t}, t ∈ R+, are relatively
compact in X) such that ∫

X
Ψ(x)dµ(x) ≤ 1 ∀µ ∈ F .

If µ ∈ P(X), recall that a Y -valued sequence (vh) of Borel maps between X and Y is said
to converge in µ-measure to v if

lim
h→∞

µ ({dY (vh, v) > δ}) = 0 ∀δ > 0.

This is equivalent to the L1(µ) convergence to 0 of the maps 1∧ dY (vh, v). It is also well known
that if Y = R and |vh|p is equi-integrable, then vh → v in µ-measure if and only if vh → v in
Lp(µ).
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Lemma 2.3 (Convergence in measure and narrow convergence) Let vh, v : X → Y be
Borel maps and let µ ∈ P(X). Then vh → v in µ-measure iff

(i, vh)#µ converges to (i, v)#µ narrowly in P(X × Y ).

Proof. If vh → v in µ-measure then ϕ(x, vh(x)) converges in L1(µ) to ϕ(x, v(x)), and therefore
thanks to (2.1) we immediately obtain the convergence of the push-forward. Conversely, let
δ > 0 and, for any ε > 0, let w ∈ Cb(X;Y ) such that µ({v 6= w}) ≤ ε. We define

ϕ(x, y) := 1 ∧ dY (y, w(x))
δ

∈ Cb(X × Y )

and notice that∫
X×Y

ϕd(i, vh)#µ ≥ µ({dY (w, vh) > δ}),
∫
X×Y

ϕd(i, v)#µ ≤ µ({w 6= v}).

Taking into account the narrow convergence of the push-forward we obtain that

lim sup
h→∞

µ({dY (v, vh) > δ}) ≤ lim sup
h→∞

µ({dY (w, vh) > δ}) + µ({w 6= v}) ≤ 2µ({w 6= v}) ≤ 2ε

and since ε is arbitrary the proof is achieved. �

We recall also the criterion for strong convergence in L1(µ) (see for instance Exercise 1.19
of [5])

lim inf
h→∞

Gh ≥ G ≥ 0, lim sup
h→∞

∫
X
Gh dµ ≤

∫
X
Gdµ < +∞ =⇒ lim

h→∞

∫
X
|Gh −G| dµ = 0.

(2.2)

Lemma 2.4 Let f : X → Y be a Borel map, µ ∈ P(X), and let v ∈ Lp(µ; Rd) for some
p ∈ (1,+∞). Then, setting ν = f#µ, we have f#(vµ) = wν for some w ∈ Lp(ν; Rd) with

‖w‖Lp(ν;Rd) ≤ ‖v‖Lp(µ;Rd). (2.3)

In case of equality we have v = w ◦ f µ-a.e. in X.

Proof. Let q be the dual exponent of p, ν := f#(vµ), and ϕ ∈ L∞(Y ; Rd); denoting by να,
α = 1, · · · , d, the components of ν we have∣∣∣∣∣
d∑

α=1

∫
Y
ϕα dνα

∣∣∣∣∣ =
∣∣∣∣∣
d∑

α=1

∫
X

(ϕα ◦ f) vα dµ

∣∣∣∣∣ ≤ ‖ϕ ◦ f‖Lq(µ;Rd)‖v‖Lp(µ;Rd) = ‖ϕ‖Lq(ν;Rd)‖v‖Lp(µ;Rd).

Since ϕ is arbitrary this proves (2.3) and, as a consequence, the same identities above hold when
ϕ ∈ Lq(ν; Rd). In case of equality it suffices to choose ϕ = |w|p−2w to obtain that v coincides
with |ϕ ◦ f |q−2(ϕ ◦ f) = w ◦ f µ-a.e. in X. �
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We conclude this section by recalling a few basic facts from the theory of optimal transporta-
tion (see for instance [24], [41], [21], [6] for much more on this fascinating subject). Let V be
an open set in Rd and for p ∈ (1,+∞) let us denote by Pp(V ) the collection of all probability
measures of P(V ) with finite p-moment, i.e.

µ ∈ Pp(V ) ⇐⇒ µ ∈ P(V ), mp(µ) :=
∫

V
|x|p dµ(x) < +∞. (2.4)

We denote by Wp the p-Kantorovich-Rubinstein-Wasserstein distance in P(V ), defined by

W p
p (µ, ν) := min

{∫
V ×V

|x− y|p dγ : γ ∈ P(V ), (π1)#γ = µ, (π2)#γ = ν

}
(2.5)

(here πi, i = 1, 2, denote the canonical projections on the factors). It is not hard to show (see
for instance [41], [6, Prop. 7.1.5]) that the convergence induced by the distance Wp is equivalent
to the narrow convergence and the convergence of the p-moment, i.e.

lim
n→∞

Wp(µn, µ) = 0 ⇐⇒

{
µn narrowly converge to µ,
lim
n→∞

mp(µn) = mp(µ). (2.6)

Notice that when V is bounded Pp(V ) = P(V ) and the convergence induced by the distance
Wp is precisely the narrow convergence.

In the case when µ ∈ Pr
p(V ), the subset of Pp(V ) made of absolutely continuous measures

with respect to Lebesgue measure L d, it can be shown [10, 24] that the minimum problem (2.5)
has a unique solution γ, and γ is induced by a transport map t:

γ = (i, t)#µ.

In particular t is the unique solution of Monge’s optimal transport problem

min
{∫

V
|r − i|p dµ : r#µ = ν

}
,

of which (2.5) is a relaxed version. Finally, we recall that if also ν ∈ Pr(V ), then

s ◦ t = i µ-a.e. and t ◦ s = i ν-a.e.,

where s is the optimal transport map between ν and µ. Moreover, it has been proved in [24]
that the optimal transport map t is differentiable at µ-a.e. point in V and detDt(x) > 0 for
µ-a.e. x ∈ V As a consequence the change of variables formula [6, Lemma 5.5.3] can be applied
to give

µ = ρL d V , ν = σL d V =⇒ σ(y) =
ρ(s(y))

det D̃t(s(y))
for ν-a.e. y ∈ V . (2.7)

In the case p = 2 the properties above can be rephrased in terms of the classical differentiability
of convex analysis, as the gradients of a convex function is differentiable L d-a.e. in the interior
of the domain of the function.

7



3 The main stability result

Time dependent measures, transport equation, and velocity vector fields

Throughout this section we fix a positive time T > 0, a summability exponent p ∈ (1,+∞) and
an open set V ⊂ Rd.

Definition 3.1 We denote by Fp(V ) the family of time-dependent measures µt ∈ Pp(V ),
with t ∈ [0, T ], such that t 7→ µt is narrowly continuous and there exists a Borel velocity field
v(t, x) = vt(x) such that ∫ T

0

∫
V
|vt(x)|p dµt(x) dt < +∞, (3.1)

and
∂

∂t
µt +Dx · (vtµt) = 0 in D′((0, T )× V ). (3.2)

Notice that the narrow continuity assumption is made just for simplicity in the definition: indeed,
it can be easily shown (see for instance Lemma 8.1.2 of [6]) that the existence of a velocity field
v satisfying (3.1,3.2) implies the narrow continuity, possibly redefining µt for a L 1-negligible set
of times. Notice also that, since we assuming that all µt’s are probability measures concentrated
on V , there is no transfer of mass across ∂V and (3.2) still holds in D′((0, T ) × Rd). Finally,
notice that a simple approximation argument shows that (3.2) and (3.1) ensure the validity of
the implication

µt ∈ P(V ), µ0 ∈ Pp(V ) =⇒ µt ∈ Pp(V ) ∀t ∈ [0, T ].

So, the assumption that µt ∈ Pp(V ) could be replaced by µ0 ∈ Pp(V ).

Remark 3.2 (Space-time representation) We can obviously identify the families µt,vtµt
with the associated nonnegative real measure µ ∈ M+((0, T ) × V ) and the vector measure
vµ ∈

[
M ((0, T )× V )

]d defined as

µ :=
∫ T

0
µt dL

1(t), vµ :=
∫ T

0
vtµt dL

1(t), (3.3)

so that for every bounded Borel real function ϕ defined in (0, T )× V∫∫
(0,T )×V

ϕ(t, x) dµ(t, x) :=
∫ T

0

∫
V
ϕ(t, x) dµt(x) dt,∫∫

(0,T )×V
ϕ(t, x) d(vµ)(t, x) :=

∫ T

0

∫
V
ϕ(t, x)v(t, x) dµt(x) dt.

(3.4)

Thus (3.1) simply means v ∈ Lp(µ; Rd).

Given µt ∈ Fp(V ), there are in principle many vector fields vt satisfying (3.1) and (3.2), and
all of them will be called admissible. It will be useful in the sequel to define a convergence in
Fp(V ) which takes into account also the behaviour of the admissible velocity fields.
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Definition 3.3 (Convergence in Fp(V )) We say that µnt ∈ Fp(V ) converge to µt ∈ Fp(V )
if µnt → µt narrowly for any t ∈ [0, T ]. If vnt , vt are admissible velocity fields corresponding to
µnt , µt respectively, with

sup
n

∫ T

0

∫
V
|vnt |p dµnt dt < +∞,

then we say that vnt converge to vt if (recalling the notation (3.3))

lim
n→∞

vnµn = vµ in D′((0, T )× V ). (3.5)

The following result, proved in Theorem 8.3.1 and Proposition 8.4.5 of [6], provides a char-
acterization of the “optimal” velocity field among all the admissible ones. See also Chapter 8 of
[6] for a more detailed explaination of why this result can be used to make Otto’s calculus (see
[35], [36]) in Pp(V ) rigorous, and to characterize the infinitesimal behaviour of the Wasserstein
distance.

Theorem 3.4 (Minimal velocity field) For any µt ∈ Fp(V ) there exists a unique, up to
L 1-negligible sets, admissible vector field vt with the property

vt ∈ Tan µtPp(V ) := {jq(∇ϕ) : ϕ ∈ C∞
c (Rd)}

Lp(µt;Rd)
for L 1-a.e. t ∈ [0, T ], (3.6)

where q ∈ (1,∞) is the dual exponent of p and jq(x) = |x|q−2x. This vector field satisfies also∫
V
|vt|p dµt ≤

∫
V
|ṽt|p dµt for L 1-a.e. t ∈ [0, T ] (3.7)

for any other admissible velocity field ṽt.

We call the velocity field given by Theorem 3.4 tangent velocity field. So, checking that
a vector field is tangent amounts to check that the continuity equation (3.2) holds and that
jp(vt) is approximable, in Lq(µt; Rd), by gradients. Finally, we recall that Proposition 8.3.1 of
[6] also shows that Fp(V ) coincides with the class of absolutely continuous curves with values
in Pp(V ), when the target is endowed with the p-th Wasserstein metric, and that the Lp norm
of the tangent velocity field can be characterized by the rate of change of the p-th Wasserstein
metric along the curve:

‖vt‖Lp(µt;Rd) = lim
h→0

Wp(µt+h, µt)
|h|

for L 1-a.e. t ∈ [0, T ].

Flows and their stability

Given a reference time s ∈ [0, T ], a measure µ̄s ∈ Pp(V ), and a Borel field v : (t, x) ∈
(0, T )×V → vt(x) ∈ Rd, a canonical way to build a solution of (3.2) is to find a flow associated
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to vt, i.e. a map X(t, s, x) : [0, T ] × [0, T ] × V → V such that t 7→ X(t, s, x) is absolutely
continuous in [0, T ] and it is an integral solution of the ODE

d

dt
X(t, s, x) = vt (X(t, s, x))

X(s, s, x) = x
(3.8)

for µ̄s-a.e. x, with ∫
V

∫ T

0

∣∣∣ d
dt

X(t, s, x)
∣∣p dt dµ̄s(x) < +∞. (3.9)

When s = 0 we will speak of forward flows and we will often omit to indicate the explicit
occurrence of s in X(t, 0, x), writing either X(t, x) or Xt(x); analogously, the case s = T
corresponds to backward flows. Using test functions of the form χ(t)ϕ(x), it is then immediate
to check that the narrowly continuous family of measures

µt = X(t, s, ·)#µ̄s (3.10)

solves (3.1,3.2) with the condition µs = µ̄s and belongs to Fp(V ) if µ̄s ∈ Pp(V ); in this case
we say that X is a flow associated with (µt,vt). A similar situation occurs when one already
knows a solution µt of (3.2) and looks for a representation formula like (3.10) [6, Chap. 8].

Without assuming any regularity on vt we do not know anything about the existence and
the uniqueness of a flow associated to (µt,vt). Postponing to the next section a more detailed
discussion of this aspect, we recall that the simplest condition [6, Prop. 8.1.8 and Thm. 8.2.1]
which ensures both the existence and the uniqueness of the forward flow representing (µt,vt) is
that the ODE (3.8) admits a unique V -valued solution for µ̄0-a.e. initial datum x ∈ V . This
property is surely verified if vt satisfies the classical (local) Lipschitz condition: denoting by
Lip(w, B) the Lipschitz constant of a map w on B, it means that

∀ (t0, x0) ∈
(
(0, T )×V

)
∪
(
{0}×V

)
∃ε, τ > 0 :

∫ t0+τ

t0

Lip(vt, Bε(x0)∩V ) dt < +∞. (3.11)

We are mainly concerning with the stability properties of flows: supposing that Xn and X are
forward flows associated with (µn,vn) and (µ,v) respectively, we look for conditions on the
measures and on their velocity vectorfields ensuring the convergence of Xn to X.

The next main convergence result shows that if

(a) v is the tangential velocity field of µ and

(b) (3.8) admits at most one solution X for µ̄0-a.e. x ∈ V ,

then the convergence of µnt in Fp(V ) and of the Lp(µn)-norms of vn are sufficient. Its proof
uses, in the same spirit of [3], [2], narrow convergence in the space of continuous maps as a
technical tool for proving convergence in measure of the flows.

Theorem 3.5 (Main convergence result) Assume that we are given:
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(i) flows µnt ∈ Fp(V ) converging to µt ∈ Fp(V ) as in Definition 3.3;

(ii) velocity fields vnt ∈ Lp(µnt ; Rd) admissible relative to µnt ;

(iii) forward flows Xn associated to (µnt ,v
n
t ), i.e. satisfying the ODE system (3.8) for vnt with

s = 0 and the transport condition (3.10) µnt = Xn(t, ·)#µn0 .

Let vt ∈ Tan µtPp(V ) be the tangent velocity field to µt (e.g. vt satisfies (3.2) and (3.6)) and
assume that

µn0 = dn#µ0 with lim
n→∞

∫
V
|dn − i|p dµ0 = 0, (3.12)

lim sup
n→∞

∫ T

0

∫
V
|vnt |p dµnt dt ≤

∫ T

0

∫
V
|vt|p dµt dt, (3.13)

and that

the ODE (3.8) admits at most one V -valued solution for µ0-a.e. x ∈ V . (3.14)

Then there exists a unique forward flow X : [0, T ]× V → V associated to (µt,vt) and the flows
Xn converge in Lp to X, precisely

lim
n→∞

∫
V

sup
[0,T ]

∣∣∣Xn(·,dn(x))−X(·, x)
∣∣∣p dµ0(x) = 0. (3.15)

Proof. We denote by Γ = C0([0, T ];V ) the complete and separable metric space of continuous
maps from [0, T ] to V , whose generic element will be denoted by γ, and we denote by et : Γ → V
the evaluation maps et(γ) = γ(t).

Since Xn(t, x) ∈ V for every x ∈ V , we can define probability measures ηn in Γ by

ηn := (Xn(·, x))# µ
n
0 , (3.16)

where x 7→ Xn(·, x) is the natural map from V to Γ. Since et ◦ (Xn(·, x)) = Xn(t, x) we
immediately obtain that

(et)#ηn = Xn(t, ·)#µn0 = µ̃nt , (3.17)

where we denoted by µ̃nt the trivial extension of µnt to V obtained by setting µ̃nt (∂V ) = 0.
Step 1. (Tightness of ηn) We claim that the family {ηn} is tight as n → ∞, that any limit
point η is concentrated on V -valued and absolutely continuous maps in [0, T ] and that

(et)#η = µ̃t, (3.18)∫
Γ

∫ T

0
|γ̇(t)|p dt dη(γ) ≤

∫ T

0

∫
V
|vt|p dµt dt, (3.19)

γ(t) ∈ V L 1-a.e. in [0, T ], for η-a.e. γ. (3.20)

Indeed, by Ascoli-Arzelà theorem, the functional

Ψ(γ) :=

{
|γ(0)|p +

∫ T
0 |γ̇(t)|p dt if γ is absolutely continuous

+∞ otherwise
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is coercive in Γ, and since γ̇ = vn(γ) for ηn-a.e. γ ∈ Γ and the p-moment of µn0 converges to the
p-moment of µ0 by (3.12), we get

lim sup
n→∞

∫
Γ

Ψ(γ) dηn = lim sup
n→∞

∫
Γ
|γ(0)|p dηn +

∫ T

0

∫
Γ
|vnt (γ(t))|p dηn dt

≤ lim sup
n→∞

∫
V
|x|p dµn0 (x) +

∫ T

0

∫
V
|vnt |p dµnt dt < +∞,

thus proving the tightness of the family. Moreover, the lower semicontinuity of Ψ gives that∫
Ψ dη is finite, so that η is concentrated on the absolutely continuous maps. An analogous

argument proves (3.19), while (3.18) can be achieved passing to the limit in (3.17).
Finally, by introducing the upper semicontinuous function

jV (x) :=

{
0 if x ∈ V ,

1 if x ∈ ∂V ,

(3.18) and Fubini’s theorem give

0 =
∫ T

0

∫
V
jV (x) dµ̃t(x) dt =

∫ T

0

∫
Γ
jV (γ(t)) dη(γ) dt =

∫
Γ

∫ T

0
jV (γ(t)) dt dη(γ) (3.21)

which is equivalent to (3.20).
Step 2. (Representation of vt) Let η be a limit point as in Step 1, along some sequence ni →∞.
By the previous claim we know that for η-a.e. γ ∈ Γ the vector field zt(γ) := γ̇(t) is well defined
up to a L 1-negligible subset of (0, T ). By Fubini’s theorem and (3.19), it coincides with a Borel
vector field z ∈ Lp(L 1 × η; Rd) with∫ T

0

∫
Γ
|zt(γ)|p dη(γ)dt =

∫
Γ

∫ T

0
|γ̇(t)|p dt dη(γ) ≤

∫ T

0

∫
V
|vt|p dµt dt. (3.22)

in particular there exists a Borel set T ⊂ (0, T ) of full measure such that zt ∈ Lp(η) for every
t ∈ T .

Define now νt := (et)#(zt · η), and notice that Lemma 2.4 gives νt is well defined and
absolutely continuous with respect to µt = (et)#η for any t ∈ T . Then, writing νt = wtµt,
Lemma 2.4 again and (3.22) give∫ T

0

∫
V
|wt|p dµt dt ≤

∫ T

0

∫
Γ
|zt(γ)|p dη dt ≤

∫ T

0

∫
V
|vt|p dµt dt. (3.23)

Now, let us show that wt is an admissible velocity field relative to µt: indeed, for any test
function ϕ ∈ C∞

c (V ) we have

d

dt

∫
V
ϕdµt =

d

dt

∫
Γ
ϕ(γ(t)) dη =

∫
Γ
〈∇ϕ(γ(t)), γ̇(t)〉 dη

=
∫

Γ
〈∇ϕ(γ(t)),zt(γ)〉 dη =

∫
V
〈∇ϕ,wt〉 dµt.

(3.24)
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As a consequence (3.23) and the minimality of vt yield vt = wt for L 1-a.e. t ∈ (0, T ). In
addition, from the equality ∫

Γ
|γ̇(t)|p dη =

∫
V
|wt|p d(et)#η

and Lemma 2.4 we infer
vt(γ(t)) = γ̇(t) η-a.e. in Γ (3.25)

for L 1-a.e. t ∈ [0, T ]. Then, (3.25) and Fubini’s theorem give

vt(γ(t)) = γ̇(t) L 1-a.e. in (0, T ) (3.26)

for η-a.e. γ. In other words, η is concentrated on the absolutely continuous solutions of the
ODE relative to the vector field vt.
Step 3. (Conclusion) By assumption, we know that there is at most one solution γ ∈ Γ of the
ODE γ̇ = vt(γ) with an initial condition γ(0) = x ∈ V . Taking into account (3.20) we obtain
that the disintegration {ηx}x∈V induced by the map e0 is a Dirac mass, concentrated on the
unique V -valued solution X(·, x) of the ODE starting from x at t = 0. As a consequence

η = (X(·, x))# µ0. (3.27)

Since η does not depend on the subsequence (ni), the tightness of (ηn) gives

(Xn(·, x))# µ
n
0 converge to (X(·, x))# µ0 narrowly as n→∞.

Since
(Xn(·, x))# µ

n
0 = (Xn(·,dn(x)))# µ0

Lemma 2.3 yields that the sequence of functions

gn(x) := sup
t∈[0,T ]

|Xn(·,dn(x))−X(·, x)| converges to 0 in µ0-measure. (3.28)

In order to prove the Lp-convergence (3.15) we can assume with no loss of generality that
Xn(·, x) → X(·, x) uniformly in [0, T ] for µ0-a.e. x, and we need to show that |gn|p is equi-
integrable in L1(µ0). To this aim, taking into account the fact that strongly converging sequences
are equi-integrable and (2.2), we exhibit a sequence of functions Gn ≥ |gn|p such that

lim inf
n→∞

Gn(x) ≥ G(x) for µ0-a.e. x ∈ V and lim sup
n→∞

∫
V
Gn(x) dµ0(x) ≤

∫
V
G(x) dµ0(x).

We can choose

Gn(x) := 3p−1
(

sup
[0,T ]

|X(·, x)|p+ |dn(x)|p+T p−1hn(x)
)
, where hn(x) :=

∫ T

0

∣∣∣ d
dt

Xn(t, x)
∣∣∣p dt.

Since dn → i in Lp(µ0; Rd) and standard lower semicontinuity result yield

lim inf
n→∞

hn(x) ≥ h(x) :=
∫ T

0

∣∣∣ d
dt

X(t, x)
∣∣∣p dt for µ0-a.e. x ∈ V (3.29)

13



the proof is achieved if

lim sup
n→∞

∫
V
hn(x) dµ0(x) ≤

∫
V
h(x) dµ0(x). (3.30)

For, we can calculate∫
V
hn(x) dµ0(x) =

∫
V

∫ T

0

∣∣∣ d
dt

Xn(t, x)
∣∣∣p dt dµ0(x) =

∫
V

∫ T

0

∣∣vnt (Xn(t, x))
∣∣p dt dµ0(x)

=
∫ T

0

∫
V

∣∣vnt (y)∣∣p dµt(y) dt
and by (3.13) we get

lim sup
n→∞

∫
V
hn(x) dµ0(x) ≤

∫ T

0

∫
V

∣∣vt(y)∣∣p dµt(y) dt =
∫

V

∫ T

0

∣∣∣ d
dt

X(t, x)
∣∣∣p dt dµ0(x)

=
∫

V
h(x) dµ0(x).

�

On the regularity of the limit vectorfield

We notice that in Theorem 3.5 no regularity is imposed on the approximating velocity fields
vnt and that assumption (3.14) stating µ0-a.e. uniqueness of solutions of the ODE (3.8) can
be guaranteed by weaker assumptions than (3.11): first, we need only uniqueness of forward
characteristics, and this requires only a one-sided Lipschitz condition (see Remark 3.6); second,
we don’t really need uniqueness of forward characteristics in a pointwise sense, but rather that
any probability measure η in Γ concentrated on absolutely continuous solutions of the ODE
γ̇ = vt(γ) is representable as in (3.27) for some “natural” flow X. Several situations where this
happens are described in Remark 3.7. Remark 3.8 shows that, when µ = βL d V and β is
continuous, it is sufficient to control the local regularity of v in the positivity set of β and the
integrability of the positive part of its divergence.

Remark 3.6 (One-sided Lipschitz condition) All conclusions of Theorem 3.5 remain valid
if vt (or, more precisely, at least one of the functions in its equivalence class modulo µt-negligible
sets) satisfies the one-sided Lipschitz condition

〈vt(x)− vt(y), x− y〉 ≤ ωt|x− y|2 ∀x, y ∈ V (3.31)

with ω ∈ L1
loc([0, T )). Indeed, it is well known that this condition ensures pointwise uniqueness

for the forward Cauchy problem associated to vt, and therefore uniqueness of the measure η
built during the proof of Theorem 3.5. See also [38], [8], [9] for other well-posedness results in
this context.
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Remark 3.7 (Sobolev or BV regularity) As the proof clearly shows, assumption (3.14) in
Theorem 3.5 could be replaced by the following more technical (but also much more general)
one:

any probability measure η in Γ = C0([0, T ];V ) concentrated on absolutely continuous
solutions of the ODE γ̇ = vt(γ) and satisfying (et)#η = µt

is representable as η = (X(·, x))# µ0 for some flow X.
(3.32)

Let us consider for instance the case when V is bounded and

v ∈ L1
loc

(
[0, T );W 1,1

loc (V ; Rd)
)
, [Dx · v]− ∈ L1

loc ([0, T );L∞(V )) .

Under these assumptions it has been proved in [20] (the assumption ∇x · v ∈ L1(L∞) made in
that paper can be weakened, requiring only a bound on the negative part, arguing as in [3]) that
the continuity equation (3.2) has at most one solution in the class of µt’s of the form µt = βtL d

with β ∈ L∞loc ([0, T );L∞(V )), for any initial condition µ0 = β0L d, β0 ∈ L∞(V ). As explained
in [2], it is a general fact that the well-posedness of the continuity equation in the class of µt’s
above (precisely, the validity of a comparison principle) implies the validity of (3.32) for µt’s in
the same class; in this particular case X is the so-called DiPerna–Lions flow associated to v (see
[20] and also [3] for a different characterization of it).
It was shown in [3] (the original L1(L∞) estimate on the negative part of the divergence has been
improved to an L1(L1) one in [2]) that also a BV regularity on v can be considered, together
with the absolute continuity of the distributional divergence:

v ∈ L1
loc

(
[0, T );BVloc(V ; Rd)

)
, [Dx · v]− ∈ L1

loc

(
[0, T );L1(V )

)
.

In this case there is uniqueness of bounded solutions of (3.2) and again (3.32) holds in the class
of solutions µt = βtL d of (3.2) with β bounded. Other classes of vectorfields to which (3.32)
applies are considered in [27], [26], [4], [30], [31].

Remark 3.8 (Continuous densities) Let P0 be an open subset of V with µ0(V \ P0) = 0.
When

µt = βtL
d V and the map (t, x) 7→ βt(x) is continuous in

(
(0, T )×V

)
∪
(
{0}×P0

)
(3.33)

we can localize condition (3.11) to the (open) positivity set of β. Thus we introduce the sets

P :=
{

(t, x) ∈ (0, T )× V : βt(x) > 0
}

(3.34)

and we assume that

β ∈ C1(P ), v, Dxv ∈ C0(P ), (3.35)

∀x0 ∈ P0 we have β0(x0) > 0 and ∃ ε > 0 such that
∫ ε

0
sup

x∈Bε(x0)
‖Dxvt(x)‖ dt < +∞, (3.36)
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so that solutions of the ODE (3.8) are locally unique in P and the Cauchy problem for x ∈ P0

admits a unique maximal forward V -valued solution. If∫ T

ε

∫
{x:βt(x)>0}

[
Dx · vt(x)

]+
dµt(x) dt < +∞ ∀ ε > 0, (3.37)

then the same conclusion of Theorem 3.5 hold. This fact is a direct consequence of the following
“confinement” Lemma.

Lemma 3.9 Let us suppose that (3.33), (3.35), (3.36), (3.37) hold; then for µ0-a.e. initial datum
x ∈ V the graph in (0, T ) × V of each maximal forward solution of the ODE (3.8) (for s = 0)
belongs to the open set P ; in particular the maximal solution is unique by (3.35), (3.36).

Proof. For every x ∈ P0 let [0, τ(x)) be the open domain of existence and uniqueness of the
maximal solution of the system (3.8) restricted to P ; classical results on perturbation of ordinary
differential equations show that the map x 7→ τ(x) is lower semicontinuous in P0, so that the set

D :=
{

(t, x) ∈ [0, T )× P0 : t < τ(x)
}

is open in [0, T )× V ,

X is of class C1 in D, and

r ∈ (0, T ), lim sup
t↑r

|Xt(x)|+
1

βt(Xt(x))
< +∞ =⇒ τ(x) > r. (3.38)

Moreover, by integrating
∫ τ(x)
0 | ddtXt(x)| dt with respect to µ0 (see for instance [6, Proposition

8.1.8] for details), one obtains that for µ0-a.e. x the map X ·(x) is bounded in (0, τ(x)), so that
(3.38) implies that τ(x) can be strictly less than T only if βt(Xt(x)) approaches 0 as t ↑ τ(x).

Let us denote by $t the divergence Dx ·vt of the vectorfield vt; since β is of class C1 in P it
is a classical solution of the continuity equation in P and therefore a simple computation gives

∂

∂t
log(βt) + vt ·Dx log βt = −$t in P, (3.39)

so that
d

dt
log
(
βt(X(t, x))

)
= −$(t,X(t, x)) t ∈ (0, τ(x)), (3.40)

and
βt(Xt(x)) detDxXt(x) = β0(x), ∀t ∈ (0, τ(x)). (3.41)

We introduce the decreasing family of open sets

Eε :=
{
x ∈ P0 : τ(x) > ε

}
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whose union is P0 and for every ε > 0 we get∫
Eε

sup
(ε,τ(x))

log
(
βε(Xε(x))/βt(Xt(x))

)
dµ0(x) ≤

∫
Eε

∫ τ(x)

ε
$+
t (Xt(x)) dt dµ0(x)

=
∫ T

ε

∫
Et

$+
t (Xt(x))βt(Xt(x)) detDxXt(x) dx dt =

∫ T

ε

∫
Xt(Et)

$+
t (y)βt(y) dy dt

≤
∫ T

ε

∫
V
$+
t (x) dµt(x) dt < +∞,

by (3.37). It follows that βt(Xt(x)) is bounded away from 0 on (ε, τ(x)) for µ0-a.e. x ∈ Eε and
therefore τ(x) = T for µ0-a.e. x ∈ Eε. Taking a sequence εn → 0 and recalling that the union
of Eεn is P0, and that µ0(V \ P0) = 0, we conclude that τ(x) = T for µ0-a.e. x ∈ V . �

Remark 3.10 Recalling (3.39), condition (3.37) surely holds if∫ T

ε

∫
{x:βt(x)>0}

(
∂tβt

)− +
(
vt ·Dxβt

)−
dx dt < +∞. (3.42)

Remark 3.11 Under the same assumptions of Lemma 3.9, setting Vε :=
{
x ∈ P0 : τ(x) > T−ε

}
we get a family of open subsets Vε ⊂ P0 such that

µ0(V \ Vε) = 0 and the restriction of X to [0, T − ε]× Vε is of class C1. (3.43)

Starting from (3.39) and arguing as in Lemma 3.9, it is easy to check that if (3.37) is replaced
by the stronger condition∫ T

ε
sup

x:βt(x)>0
[Dx · vt(x)]+ dt < +∞ ∀ε > 0, (3.44)

then maximal solutions are unique for every x0 ∈ P0 and X is of class C1 in [0, T ]× P0.

4 Gradient flows and convergence of iterated transport maps

Subdifferentials, slopes, and Gradient flows in P2(V )

In this section we assume that p = 2 and that V is an open subset of Rd with L d(∂V ) = 0.
In order to be formally consistent with the theory developped in [6], we identify P2(V ) with
the set of measures µ ∈ P2(Rd) such that µ(Rd \ V ) = 0 and we consider a proper functional
φ : P2(Rd) → (−∞,+∞] which is lower semicontinuous with respect to the narrow convergence
of P(Rd) on the bounded sets of P2(Rd), i.e.

µn → µ narrowly, sup
n

∫
Rd

|x|2 dµn(x) < +∞ ⇒ lim inf
n→∞

φ(µn) ≥ φ(µ); (4.1)
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we also assume that

inf
P2(Rd)

φ > −∞ and φ(µ) = +∞ for any µ ∈ P2(Rd) \Pr
2(V ). (4.2)

Dom (φ) ⊂ Pr
2(V ) denotes the domain of finiteness of the functional.

Remark 4.1 The second of the assumptions (4.2) on φ, namely that φ can be finite only on
absolutely continuous measures, has been made only to simplify the exposition, also because it
is fulfilled in Example 4.4 below and in the context described in the next section.

In order to define in a precise way the concept of “gradient flow” of φ in P2(V ), we introduce
the notion of strong and limiting subdifferential (see [6, 10.1.1 and 11.1.5], and more gener-
ally Chapter 10 of [6] for a systematic development of the subdifferential calculus in spaces of
probability measures).

Definition 4.2 (Strong and limiting subdifferentials in P2(V )) We say that ξ ∈ L2(µ; Rd)
belongs to the strong subdifferential ∂sφ(µ) of φ at µ if µ ∈ Dom (φ) and

φ(t#µ)− φ(µ) ≥
∫

V
〈ξ(x), t(x)− x〉 dµ(x) + o

(
‖t− i‖L2(µ;Rd)

)
. (4.3)

We say that ξ ∈ L2(µ; Rd) belongs to the limiting subdifferential ∂`φ(µ) of φ at µ if µ ∈ Dom (φ)
and there exist sequences ξk ∈ ∂sφ(µk) such that

µk → µ narrowly in P(V ), ξkµk → ξµ in the sense of distributions in D′(V ), (4.4)

sup
k

(
φ(µk),

∫
V

(
|x|2 + |ξk(x)|2

)
dµk(x)

)
< +∞. (4.5)

We also set

|∂`φ|(µ) := inf
{
‖ξ‖L2(µ;Rd) : ξ ∈ ∂`φ(µ)

}
, with the convention inf ∅ = +∞. (4.6)

Thanks to (4.2) and (4.5), (4.4) is also equivalent to the apparently stronger condition

µk → µ narrowly in P(Rd), ξkµk → ξµ in the sense of distributions of D′(Rd). (4.5’)

Definition 4.3 (Gradient flow) We say that µt ∈ F2(V ) is a gradient flow relative to φ with
initial datum µ̄ ∈ Dom (φ) if φ(µt) ≤ φ(µ̄), µt → µ̄ in P2(V ) as t ↓ 0, and its tangent velocity
field vt satisfies

−vt ∈ ∂`φ(µt) for L 1-a.e. t ∈ (0, T ). (4.7)

We recall here the main example we are interested in, referring to [6, Chap. 10 and 11] for other
applications.
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Example 4.4 (The internal energy functional) Let us assume that

ψ : [0,+∞) → (−∞,+∞] is a convex l.s.c. function with superlinear growth at infinity (ψ 1)

which is differentiable in (0,+∞) and satisfies{
ψ(0) = 0,(
ψ(s)

)− ≤ Csα for some α > 1− d
d+2

if L d(V ) = +∞. (ψ 2)

We consider the lower semicontinuous functional

φ(µ) :=


∫

V
ψ (β(x)) dx if µ = β ·L d ∈ Pr(V ),

+∞ if µ ∈ P2(V ) \Pr
2(V ),

which obviously satisfies conditions (4.1) and (4.2). If

ψ(0) < +∞, µ = β ·L d ∈ Pr
2(V ), with β ∈ L∞(V ) (4.8)

and we set
Lψ(β) := βψ′(β)− ψ(β), (4.9)

then it is possible to show (see [6, Example 11.1.9]; observe that even when L d(V ) = +∞ the
inequality 0 ≤ Lψ(β) ≤ βψ′

(
‖β‖∞

)
+
(
ψ(β)−

)
yields the integrability of Lψ) that

ξ ∈ ∂`φ(µ) ⇒ Lψ(β) ∈W 1,1(V ) and ∇Lψ(β) = βξ, (4.10)

so that

if ∂`φ(µ) 6= ∅ then ∂`φ(µ) contains the unique element ξ =
∇Lψ(β)

β
∈ L2(µ; Rd).

(4.11)
The L2-norm of ξ is a crucial quantity which we call

I (β) :=
∫

V

∣∣∣∣∇Lψ(β)
β

∣∣∣∣2 β dx =
∫

V

|∇Lψ(β)|2

β
dx. (4.12)

Thus, if a curve µt = βtL d ∈ F2(V ) with β ∈ L∞((0, T ) × V ) is a gradient flow relative to φ
starting from µ̄ = β̄L d ∈ Dom (φ) with β̄ ∈ L∞(V ), then

Lψ(β) ∈ L2(0, T ;W 1,2(V )),
∫ T

0
I (βt) dt < +∞, φ(βt) ≤ φ(β̄) < +∞, (4.13)

and βt solves the nonlinear diffusion PDE

∂tβt −∆Lψ(βt) = 0 in (0, T )× V , ∂nLψ(βt) = 0 on (0, T )× ∂V , (4.14)
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in the following weak sense

d

dt

∫
V
ζ(x)βt(x) dx+

∫
V
∇Lψ(βt(x)) · ∇ζ(x) dx = 0 ∀ ζ ∈ C∞

c (Rd). (4.15)

In particular, integrating by parts against test function ζ with ∂nζ = 0 on ∂V , we shall also see
that βt is the unique [11] weak solution of (4.15) satisfying

d

dt

∫
V
ζ(x)βt(x) dx =

∫
V
Lψ(βt(x))∆ζ(x) dx ∀ ζ ∈ C∞

c (Rd), ∂nζ = 0 on ∂V . (4.16)

We introduce the metric counterparts to the notion of strong and limit subdifferentials:

Definition 4.5 (Local and relaxed metric slopes) The local metric slope of a l.s.c. func-
tional φ : P2(V ) → (−∞,+∞] is defined as

|∂φ|(µ) := lim sup
W (µ,ν)→0

(
φ(µ)− φ(ν)

)+
W (µ, ν)

∀µ ∈ Dom (φ). (4.17)

Its narrow relaxation is

|∂−φ|(µ) := inf
{

lim inf
n→∞

|∂φ|(µn) : µn → µ narrowly, sup
n

{
W (µn, µ), φ(µn)

}
< +∞

}
. (4.18)

A simple link between the vector and the metric concepts is discussed in the next lemma:

Lemma 4.6 (Comparison between subdifferentials and slope) For every µ ∈ Dom (φ)
and ξ ∈ ∂sφ(µ) we have

|∂`φ|(µ) ≤ |∂−φ|(µ) ≤ |∂φ|(µ) ≤ ‖ξ‖L2(µ;Rd). (4.19)

Proof. It is obvious that the relaxed slope |∂−φ|(µ) cannot be greater than |∂φ|(µ), which is
also bounded by the norm of any element in ∂sφ(µ) simply by its very definition (4.3).

In order to prove the first inequality in (4.19) let us choose ε > 0 and measures µk such that

µk → µ narrowly, sup
k

{
W (µk, µ), φ(µk)

}
< +∞, lim

k→∞
|∂φ|(µk) ≤ |∂−φ|(µ) + ε,

as in (4.18). Combining Lemma 10.1.2, 3.1.3, and 3.1.5 of [6], we find measures µ̃k and vectors
ξ̃k ∈ ∂sφ(µ̃k) such that

W (µk, µ̃k) ≤ k−1, ‖ξ̃k‖L2(µ̃k;Rd) ≤ |∂φ|(µk) + k−1, φ(µ̃k) ≤ φ(µk), (4.20)

so that (up to extracting a subsequence such that ξkµk is converging in the distribution sense;
using the L2 bound on ξk it is easy to check that the limit is representable as ξµ) we find a
limiting subdifferential ξε ∈ ∂`φ(µ) with ‖ξ‖ ≤ |∂−φ|(µ) + ε. Being ε > 0 arbitrary, we get the
thesis. �
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The “Minimizing Movement” approximation scheme. One of the possible ways to show
existence of gradient flows is to prove the convergence (up to subsequence) of the time discretiza-
tion of (4.7) by means of a variational formulation of the implicit Euler scheme (we refer to [6]
for a more general discussion of this approach and an up-to-date bibliography). Specifically,
given a time step τ > 0 and µ̄ ∈ Dom (φ), we recursively define a sequence of measures µk in
such a way that µ0 = µ̄ and

µk minimizes µ 7→ 1
2τ
W 2

2 (µ, µk−1) + φ(µ) (4.21)

for any integer k ≥ 1. Then, we can define a piecewise constant discrete solutionM τ : [0,+∞) →
P2(V ) by

M τ,t := µk if t ∈
(
(k − 1)τ, kτ ]; (4.22)

analogously, denoting by tk the optimal transport map between µk−1 and µk, with inverse sk

we can define a piecewise constant (with respect to time) velocity field by

Vτ,t :=
i− sk

τ
∈ L2(M τ,t; Rd) with − Vτ,t ∈ ∂sφ(M τ,t) for t ∈

(
(k − 1)τ, kτ ]. (4.23)

With this notation the following energy convergence result holds:

Theorem 4.7 (Convergence of discrete approximations and Gradient flows) Let us as-
sume that φ satisfies (4.1) and (4.2) and that

∂`φ(µ) contains at most one vector. (4.24)

For every µ̄ ∈ Dom (φ) there exists a vanishing subsequence of time steps τn ↓ 0 and a curve
µt ∈ F2(V ) such that the discrete solutions M τn,t, narrowly converge to µt as n ↑ ∞ for every
t ∈ [0, T ] and VτnM τn converge to vµ in D′((0, T )× V ), where vt satisfies

∂tµt +D · (vtµt) = 0 in D′((0, T )× Rd), −vt = ∂`φ(µt) for L 1-a.e. t ∈ (0, T ),∫ T

0
‖vt‖2

L2(µt;Rd) dt < +∞.
(4.25)

Moreover, if µt satisfies the “upper gradient inequality”

φ(µt) +
∫ t

0
|∂−φ|(µs) · ‖vs‖L2(µs;Rd) ds ≥ φ(µ̄) ∀ t ∈ [0, T ], (4.26)

where vt is the tangent velocity field to µt, then

vt = vt µt-a.e., for L 1-a.e. t ∈ (0, T ), (4.27)

µt is a gradient flow relative to φ according to (4.7),

lim
n→∞

W2(M τn,t, µt) = 0, lim
n→+∞

φ(M τn,t) = φ(µt) ∀ t ∈ [0, T ], (4.28)
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the discrete velocity fields Vτn,t satisfy

lim
n→∞

∫ T

0

∫
V
|Vτn,t|2 dM τn,t dt =

∫ T

0

∫
V
|vt|2 dµt dt, (4.29)

the map t 7→ φ(µt) is absolutely continuous, and finally

d

dt
φ(µt) = −

∫
V
|vt(x)|2 dµt(x) for L 1-a.e. t ∈ (0, T ). (4.30)

The proof combines various a priori estimates and a deep variational interpolation argument
due to De Giorgi: it allows to derive a discrete energy identity that gives in the limit the
(standard) continuous energy identity, the absolute continuity of t 7→ φ(µt) and the convergence
of all discrete quantities to their continuous counterpart. Related results, are treated in [28] (the
seminal paper on this subject), [34], [1]; a comprehensive convergence scheme at the PDE level
is also illustrated in §11.1 of [6].

Proof. Theorem 11.1.6 and Corollary 11.1.8 of [6] yield the pointwise narrow convergence of
M τn to µ, the distributional convergence of VτnM τn to vµ and (4.25).

If vt is the velocity vector field associated to the curve µt, we have

|µ′|(t) = lim
h→0

W (µt+h, µt)
|h|

= ‖vt‖L2(µt;Rd) ≤ ‖vt‖L2(µt;Rd) for L 1-a.e. t ∈ (0, T ). (4.31)

In order to prove the second part of the Theorem, we are introducing the so called “De Giorgi
variational interpolants” M̃τ,t, which are defined as

M̃τ,t minimizes µ 7→ 1
2σ
W 2

2 (µ, µk−1) + φ(µ) if t = (k − 1)τ + σ, 0 < σ ≤ τ, (4.32)

(choosing when σ = τ M̃τ,t = µk) together with the related optimal transport maps s̃t which
push M̃τ,t on µk−1 for t = (k − 1)τ + σ, and the velocities

Ṽτ,t :=
i− s̃t
σ

∈ L2(M̃τ,t; Rd), −Ṽτ,t ∈ ∂sφ(M̃τ,t). (4.33)

The interest of De Giorgi’s interpolants relies in the following refined discrete energy identity
(see Lemma [6, 3.2.2])

1
2

∫ t

0

∫
V
|Vτ,s|2 dM τ,s ds+

1
2

∫ t

0

∫
V
|Ṽτ,s|2 dM̃τ,s ds+ φ(M τ,t) = φ(µ̄) if t/τ ∈ N. (4.34)

Since M̃τn,t still narrowly converge to µt [6, Cor. 3.3.4], we pass to the limit in the above identity
as τn → 0 by using Fatou’s Lemma, the narrow lower semicontinuity of φ, and the very definition
of relaxed slope (4.18); by (4.26) we obtain for every t ∈ [0, T ]

lim sup
n→∞

1
2

∫ t

0

∫
V
|Vτn,s|2 dM τn,s ds+

1
2

∫ t

0
|∂−φ|2(µs) ds+ φ(µt) ≤ φ(µ̄) (4.35)

≤ φ(µt) +
∫ t

0
|∂−φ|(µs) · ‖vs‖L2(µs;Rd) ds, (4.36)
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i.e.

lim sup
n→∞

1
2

∫ t

0

∫
V
|Vτn,s|2 dM τn,s ds−

1
2

∫ t

0

∫
V
|vs|2 dµs ds+

1
2

∫ t

0

(
|∂−φ|(µs)−‖vs‖L2(µs;Rd)

)2
ds ≤ 0.

Since general lower semicontinuity results yield (see Theorem 5.4.4 in [6])

lim inf
n→∞

1
2

∫ t

0

∫
V
|Vτn,s|2 dM τn,s ds ≥

1
2

∫ t

0

∫
V
|vs|2 dµs ds ≥

1
2

∫ t

0

∫
V
|vs|2 dµs ds,

taking into account (4.19) we conclude that∫ T

0
‖Vτn,t‖2

L2(Mτn,t;Rd) dt→
∫ T

0
‖vt‖2

L2(µt;Rd) dt,

‖vt‖L2(µt;Rd) = ‖vt‖L2(µt;Rd) = |∂−φ|(µt) = |∂`φ|(µt) for L 1-a.e. t ∈ (0, T ),

and, using again (4.35), φ(Mτn,t) → φ(µt) for all [0, T ] and

φ(µt) = φ(µ̄)−
∫ t

0
|∂−φ|(µs) · ‖vs‖L2(µs;Rd) ds ∀t ∈ [0, T ].

Hence the map t 7→ φ(µt) is absolutely continuous and

d

dt
φ(µt) = −‖vt‖2

L2(µt;Rd) L 1-a.e. in (0, T ).

By the minimality of the norm of vt among all the possible vector fields satisfying the continuity
equation (4.25) we also deduce (4.27).

Finally, in order to check the convergence of M τn,t to µt in P2(Rd) we apply (2.6) and we
simply show the convergence of the quadratic moment ofM τn,t. Recall that, if t ∈

(
(m−1)τ,mτ

]
∫

Rd

|x|2 dMτ,t(x)−
∫

Rd

|x|2 dµ̄(x) =
m∑
j=1

∫
Rd

|x|2 dµj(x)−
∫

Rd

|x|2 dµj−1(x)

≤ 2
m∑
j=1

∫
Rd

〈x− sj(x), x〉 dµj(x) = 2
∫ mτ

0

∫
Rd

〈Vτ,t(x), x〉 dM τ,t(x),

whereas for the absolutely continuous curve µt∫
Rd

|x|2 dµt(x)−
∫

Rd

|x|2 dµ̄(x) = 2
∫ t

0

∫
Rd

〈vs(x), x〉 dµs(x).

Taking into account (4.29) and arguing as in [6, Lemma 5.2.4], we obtain

lim sup
n→∞

∫
Rd

|x|2 dMτn,t ≤
∫

Rd

|x|2 dµt,

which yields the convergence of the quadratic moments. �
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(4.24) and the general properties (4.1), (4.2) are not particularly restrictive, as they are
easily checked on many examples; the crucial assumption of the previous theorem is in fact the
“upper gradient” inequality (4.26).

With respect to the results of [6, Chap.2], here there is a slight improvement: it is sufficient
to chek this inequality only on the limit curves arising from the “Minimizing Movement” scheme
(instead of proving it on all the curves with finite energy). This simple remark is quite useful to
show that bounded solutions to the nonlinear diffusion equation (4.14) we introduced in Example
4.4, satisfy the “upper gradient inequality” (4.26).

Proposition 4.8 (The Gradient flow of the internal energy functional) Let us assume
that the function ψ of Example 4.4 satisfies (ψ 1), (ψ 2),

ψ is smooth in (0,+∞) with ψ′′ > 0, and ψ(0) < +∞. (ψ 3)

We also suppose that the initial datum µ̄ = β̄L d satisfies

sup
x∈V

β̄(x) < +∞, φ(µ̄) =
∫

V
ψ(β̄(x)) dx < +∞,

∫
V
|x|2β̄(x) dx < +∞. (ψ 4)

Then the discrete solutions Mτ,t of the Minimizing Movement scheme converge pointwise to
µt := βtL d in P2(V ) as τ ↓ 0, βt is the unique solution in L∞((0, T )× V ) of (4.14) with the
integrability conditions (4.13), and βt satisfies the energy identity∫

V
ψ(βt) dx+

∫ t

0

∫
V

|∇Lψ(βs)|2

βs
dx ds =

∫
V
ψ(β̄) dx ∀ t ∈ [0, T ]. (4.37)

Moreover, the internal energy functional introduced in Example 4.4 satisfies the “upper gradient
inequality” along any limit curve µt = βtL d and therefore all the convergence properties of
Theorem 4.7 hold true.

Proof. Up to perturbing ψ by an additive constant, it is not restrictive to assume that ψ(0) = 0.
By applying the first part of Theorem 4.7 and the discrete L∞-estimates of [36], [1], we obtain

that any limit curve µt := βtL d of the Minimizing Movement scheme is a uniformly bounded
weak solution (according to (4.16)) of (4.14) satisfying (4.13). Since bounded weak solutions
are unique [11], we obtain the convergence of the whole sequence Mτ,t; standard estimates on
nonlinear diffusion equations show that ‖βt‖L∞(V ) ≤M∞ := ‖β̄‖L∞(V ).

It remains to check the validity of the upper gradient inequality. Let

S := β̄ + conv
{
βt − β̄ : t ∈ [0, T ]

}L2(V )

⊂
{
β ∈ L1(V ) ∩ L∞(V ) : β ≥ 0, ‖β‖L1(V ) = 1, ‖β‖L∞(V ) ≤M∞

}
,

and the H−1-like distance on S

d(β1, β2) := sup
{∫

V
ζ(x) (β1 − β2) dx : ζ ∈ C∞

c (Rd), ‖∇ζ‖L2(V ;Rd) ≤ 1
}
. (4.38)
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It is not difficult to check that d is finite on S : let us first observe that (4.15), (4.13), and a
standard approximation result in W 1,2(V ), yield∫

V
ζ
(
βt1 − βt0

)
dx = −

∫ t1

t0

∫
V
∇Lψ(βt) · ∇ζ dx dt ∀ ζ ∈W 1,2(V ). (4.39)

Choosing now a test function ζ ∈ C∞
c (Rd) with ‖∇ζ‖L2(V ) ≤ 1 and 0 ≤ t0 < t1 ≤ T , we get∫

V
ζ
(
βt1 − βt0

)
dx ≤

∫ t1

t0

‖∇Lψ(βt)‖L2(V ;Rd) dt ≤M1/2
∞

∫ t1

t0

√
I (βt) dt, (4.40)

so that by (4.13)

d(βt1 , βt0) ≤M1/2
∞

∫ t1

t0

√
I (βt) dt, and

∫ T

0
I (βt) dt < +∞. (4.41)

Let us now introduce the regularized convex functionals

φε(β) :=
∫

V
ψε(β) dx ∀β ∈ S , ψε(β) :=

{
ψ(β) + εψ′(ε)− ψ(ε) if β > ε,

ψ′(ε)β if 0 ≤ β ≤ ε,
(4.42)

and the related “Lagrangians”

Lψε(β) =

{
Lψ(β)− Lψ(ε) if β > ε,

0 if 0 ≤ β ≤ ε.
(4.43)

Observe that φε are geodesically convex functionals on S , since the usual segments t 7→ (1 −
t)ρ0 + tρ1, ρ0, ρ1 ∈ S , are constant speed geodesics in S . An upper bound for the slope of φε

|∂φε|S (β) := lim sup
d(β,ρ)→0

(
φε(β)− φε(ρ)

)+
d(β, ρ)

can be readily obtained: first of all, we recall that I (β) < +∞ implies Lψ(β) ∈ W 1,2(V ) and
|∇Lψ(β)|2/β ∈ L1(V ), hence

I (β) < +∞ =⇒
Lψε(β)
β

= ψ′ε(β) ∈W 1,2(V ), ‖∇ψ′ε(β)‖2
L2(V ;Rd) ≤ ε−1I (β); (4.44)

therefore, assuming that I (β) < +∞ and using the convexity of ψε, we get

φε(β)− φε(ρ) ≤
∫

V
ψ′ε(β)(β − ρ) dx ≤ d(β, ρ)‖∇ψ′ε(β)‖L2(V ;Rd), (4.45)

and we can use (4.44) to obtain

|∂φε|S (β) ≤ ε−1/2
√

I (β). (4.46)
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Applying [6, Theorem 1.2.5] and the estimate (4.41) we find that the map t 7→ φε(βt) is absolutely
continuous; since ψ′ε(βt) ∈W 1,2(V ) for L 1-a.e. t ∈ (0, T ), combining (4.45) with βt, βt+h instead
of β, ρ and (4.39) with ζ := ψ′ε(βt), we get

φε(βt)− φε(βt+h) ≤
∫

V
ψ′ε(βt)

(
βt − βt+h

)
dx =

∫ t+h

t

∫
V
∇Lψ(βs) · ∇ψ′ε(βt) dx ds, (4.47)

for L 1-a.e. t ∈ (0, T ). Since Lebesgue differentiation Theorem for functions with values in the
Hilbert space L2(V ; Rd) yields

lim
h→0

∫
V

∣∣∣1
h

∫ t+h

t
∇Lψ(βs) ds−∇Lψ(βt)

∣∣∣2 dx = 0 for L 1-a.e. t ∈ (0, T ),

dividing by h 6= 0 and taking the limit of (4.47) as h goes to 0 from the right and from the left,
we find that the derivative of φε ◦ β is

d

dt
φε(βt) = −

∫
V
∇ψ′ε(βt) · ∇Lψ(βt) dx for L 1-a.e. t ∈ (0, T ).

Since

βt∇ψ′ε(βt) = ∇Lψε(βt) = ∇Lψ(βt)χε,t(x) with χε,t(x) :=

{
1 if βt(x) > ε,

0 if 0 ≤ βt(x) ≤ ε,
(4.48)

integrating in time we eventually find∫
V
ψε(βt) dx+

∫ t

0

∫
V

|∇Lψ(βs)|2

βs
χε,s dx ds =

∫
V
ψε(β̄) dx. (4.49)

Since ψε ↓ ψ and it is easy to check that, e.g., ψ1(β) ∈ L1(V ), we can pass to the limit as ε ↓ 0
in (4.49) and we find the energy identity (4.37).

The “upper gradient inequality” (4.26) follows immediately if we show that

v̄t = −∂`φ(µt) = −
∇Lψ(βt)

βt
∈ Tan µtP2(V ) for L 1-a.e. t ∈ (0, T ), (4.50)

i.e., according to (3.6), if for L 1-a.e. t ∈ (0, T ) there exists a family of functions ζε ∈ C∞
c (Rd)

such that ∇ζε → v̄t in L2(µt; Rd) as ε ↓ 0. Since βt ∈ L∞(V ), by standard extension and
approximation results, it is sufficient to find an approximating sequence ζε ∈ W 1,2(V ); disre-
garding a L 1-negligible subset of (0, T ) we can assume that Lψ(βt) ∈ W 1,2(V ) and recalling
(4.48) we can choose

ζε := ψ′ε(βt) ∈W 1,2(V ) so that ∇ψ′ε(βt) =
∇Lψ(βt)

βt
χε,t →

∇Lψ(βt)
βt

(4.51)

in L2(µt; Rd) as ε ↓ 0. �
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Remark 4.9 (The case ψ(0) = +∞) When ψ(0) = +∞, we will also assume that β̄ ≥ βmin >
0 L d-a.e. in V , so that the maximum principle yields βt ≥ βmin in (0, T ) × V . In this case
V has to be bounded and the calculations are even easier than in the previous Proposition:
e.g. by modifying ψ in the interval (0, βmin) we directly obtain (4.37) without performing any
preliminary regularization of ψ around 0.

Remark 4.10 (The case when φ is displacement convex) When V is a convex subset of
Rd, φ has compact sublevels in Pr

2(Rd) (this is always the case if, e.g., V is bounded), and it
is displacement convex, i.e. for any µ, ν ∈ Pr

2(V ), if we denote by tνµ ∈ L2(µ;V ) the optimal
transport map between µ and ν relative to W2, the map

t 7→ φ
(
((1− t)tνµ + ti)#µ

)
is convex in [0, 1], (4.52)

then the theory becomes considerably simpler: solutions to the gradient flow equation are in
fact unique, the (limiting) subdifferential is characterized by the following system of variational
inequalities

ξ ∈ ∂`φ(µ) ⇐⇒ φ(ν) ≥ φ(µ) +
∫

V
〈ξ, tνµ − i〉 dµ ∀ν ∈ Pr(V ), (4.53)

and inequality (4.26) is always satisfied by any absolutely continuous curve in P2(Rd) (see
Corollary 2.4.11, §10.1.1 and Chapter 11 of [6]).

Notice also that if the stronger property

t 7→ φ
(
((1− t)tνµ + ttσµ)#µ

)
is convex in [0, 1] for any µ, ν, σ ∈ Pr(V )

holds, then even error estimates for the scheme can be proved, see Theorem 4.0.4 and §11.2 of
[6], and as a consequence one can also consider initial data that are in Dom (φ).

In the case of the internal energy functional of Example 4.4, the assumption of displacement
convexity is equivalent to McCann’s condition

s 7→ sdψ(s−d) is convex and non increasing in (0,+∞), (4.54)

which is more restrictive than convexity if the space dimension d is greater than 1.

Convergence of iterated transport maps

In the final part of the present section we study the convergence as τ ↓ 0 of the iterated transport
maps

T k := tk ◦ T k−1 = tk ◦ tk−1 ◦ · · · ◦ t1, (4.55)

associated to the Minimizing Movement scheme (4.21); recall that we denoted by tk the (unique)
optimal transport map pushing µk−1 on µk and by sk =

(
tk
)−1 its inverse map, pushing µk to

µk−1; in particular T k maps µ̄ = µ0 to µk.
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We can “embed” the discrete sequence T k into a continuous flow T τ,t such that T τ,t = T k

if t is one of the nodes kτ of the discrete partition. To fix a simple notation, in what follows

if t ∈
[
(k − 1)τ, kτ

)
we decompose it as t = (k − 1)τ + στ, σ =

{ t
τ

}
∈ (0, 1], (4.56)

and we set

tk−1,σ := (1− σ)i + σtk, tσ,k := tk ◦
(
tk−1,σ

)−1
, so that tk = tσ,k ◦ tk−1,σ, (4.57)

T τ,t := (1− σ)T k−1 + σT k = tk−1,σ ◦ T k−1, so that T k = tσ,k ◦ T τ,t. (4.58)

The continuous family of maps T τ,t is naturally associated to a sort of “piecewise linear” inter-
polant (according to McCann’s displacement convexity) continuous interpolation µτ,t of the
sequence of measures µk:

µτ,t :=
(
tk−1,σ

)
#
µk−1 = (T τ,t)# µ̄, so that µk =

(
tσ,k
)

#
µτ,t if t ∈

[
(k − 1)τ, kτ).

(4.59)
Notice that the inverse of the map tk−1,σ is well defined up to µτ,t-negligible sets and it coincides
with the optimal transport map between µτ,t and µk−1; moreover

tσ,k =
(
tk−1,σ ◦ sk

)−1
=
(
σi + (1− σ)sk

)−1
. (4.60)

We define also the velocity vector field vτ,t associated to this flow

vτ,t := Vτ,t ◦ tσ,k =
i− sk

τ
◦ tσ,k ∈ L2(µτ,t; Rd) if t ∈

[
(k − 1)τ, kτ

)
. (4.61)

Due to the uniform C0,1/2 bound

1
2

∞∑
k=0

W 2
2 (µk+1, µk) ≤ τ

∞∑
k=0

(
φ(µk)− φ(µk+1)

)
≤ τ

(
φ(µ̄)− inf φ

)
, (4.62)

the convergence statement of Theorem 4.7 applies not only to the discrete piecewise constant
solution M τ,t, but also to µτ,t. The following lemma shows that vτ,t is an admissible velocity
field relative to µτ,t and provides the corresponding energy estimate.

Lemma 4.11 (Properties of the continuous interpolation) Let µτ,t, vτ,t, T τ,t be defined
as in (4.59), (4.61), and (4.58) respectively. Then T τ,t is a flow relative to (µt,vτ,t) and in
particular the continuity equation

d

dt
µτ,t +Dx · (vτ,tµτ,t) = 0 in D′ ((0, T )× V ) (4.63)

holds. Moreover we have∫ T

0

∫
V
|vτ,t|2 dµτ,t dt =

∫ T

0

∫
V
|Vτ,t|2 dM τ,t dt ∀T > 0. (4.64)
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Proof. We check first that T τ,t is a flow relative to vτ,t. Clearly t 7→ T τ,t(x) is continuous
and piecewise linear; in any interval

(
(k− 1)τ, kτ

)
, with k integer, we have that its derivative is

given by
d

dt
T τ,t(x) =

1
τ

(
T k(x)− T k−1(x)

)
, (4.65)

so that (4.61) and (4.58) yield

vτ,t(T τ,t(x)) =
1
τ
(i− sk) ◦ tσ,k(T τ,t(x)) =

1
τ
(i− sk) ◦ T k(x) =

1
τ
(T k(x)− T k−1(x)),

and therefore the ODE d
dtT τ,t(x) = vτ,t(T τ,t(x)) is satisfied.

Finally, by the definition of vτ,t and taking into account (4.59) we get∫
V
|vτ,t|2 dµτ,t =

∫
V
|Vτ,t(tσ,k(x))|2 dµτ,t(x) =

∫
V
|Vτ,t|2 dµk t ∈

[
(k − 1)τ, kτ

)
,

and this immediately gives (4.64) after an integration in time. �

Theorem 4.12 (Convergence of forward iterated transport maps) Let µτ,t, vτ,t, T τ,t be
defined as in (4.59), (4.61) and (4.58) respectively starting from µ̄ = β̄L d ∈ Dom (φ). Assume
that ψ and β̄ satisfy all the assumptions of Theorem 4.7, including the upper gradient inequality
(4.26), and that the tangent velocity field vt relative to the gradient flow µt of φ with initial
condition µ̄ satisfies (3.11) (or at least one of the conditions illustrated in Remarks 3.6, 3.7, and
3.8).

Then
lim
τ↓0

∫
V

max
t∈[0,T ]

|T τ,t(x)−X(t, x)|2 dµ̄(x) = 0 ∀T > 0, (4.66)

where X is the flow associated to vt.

Proof. We apply Theorem 3.5. Notice that the convergence of µτ,t to µt as τ ↓ 0 is ensured
by Theorem 4.7 (that gives the convergence of M τ,t) and the C0,1/2 estimate (4.62). Moreover,
(4.64) and (4.29) give

lim sup
τ↓0

∫ T

0

∫
V
|vτ,t|2 dµτ,t dt = lim sup

τ↓0

∫ T

0

∫
V
|Vτ,t|2 dM τ,t dt =

∫ T

0
|vt|2 dµt dt

for any T > 0. Therefore, taking also into account that T τ,t(x) are flows relative to vt,τ , all the
assumptions of Theorem 3.5 are fulfilled and (4.66) is the conclusion of that theorem. �

The assumption (3.11) (and its variants considered in Remark 3.6, Remark 3.7 and Re-
mark 3.8) may not be satisfied if the initial datum µ̄ is not sufficiently smooth. For this reason
it is also interesting to consider the behaviour of the inverses of T τ,t, reversing also the time
variable. In the following theorem we focus on the case of a Sobolev regularity of v with respect
to the space variable, leaving all other variants (for instance the BV ones) to the interested
reader.
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Recalling (3.8), given T > 0 we define the backward flow X̃(t, x) associated to vt as X̃(t, x) :=
X(t, T, x). Under the assumption

v ∈ L1
loc

(
(0, T ];W 1,1

loc (V )
)
, [∇x · v]+ ∈ L1

loc ((0, T ];L∞(V )) , (4.67)

considered up to a time reversal in Remark 3.7, the backward flow is well defined up to t = 0
and produces for t > 0 densities µt = X̃(t, ·)#µ̄ in L∞(V ) for any µ̄ ∈ L∞(V ).

Analogously, we define
T̃ τ,t := T τ,t ◦ T−1

τ,T , (4.68)

mapping µτ,T to µτ,t. Finally, as in Theorem 3.5, we have to take into account a correction term
due to the optimal map dτ between µT and µτ,T .

Theorem 4.13 (Convergence of backward iterated transport maps) Let T̃ τ,t be defined
as in (4.68) starting from µ̄ ∈ Dom (φ). Assume that φ satisfies all the assumptions of Theo-
rem 4.7 and that the tangent velocity field vt relative to the gradient flow µt of φ with initial
condition µ̄ satisfies (4.67). Then

lim
τ↓0

∫
V

max
t∈[0,T ]

∣∣∣T̃ τ,t(dτ )− X̃(t, x)
∣∣∣2 dµT = 0.

Proof. We have just to notice that T̃ τ,t is the backward flow associated to the velocity field vτ,t
defined in (4.61) and then, using the same estimates used in the proof of Theorem 4.12, apply
Theorem 3.5 and Remark 3.7 in a time reversed situation. �

Now we conclude the discussion relative to the basic example 4.4 we are interested to, namely
the internal energy functional. See for instance [33], [41], [6] for more general examples.

The case of the internal energy functional. Let ψ : [0,+∞) → (−∞,+∞] and µ̄ = β̄L d

be satisfying assumptions (ψ 1), (ψ 2), (ψ 3), and (ψ 4). Theorem 4.7 applies, yielding a unique
gradient flow µt = βtL d relative to φ which satisfies the nonlinear PDE

∂

∂t
βt = Dx · (∇Lψ(βt)) in D ′ ((0, T )× V ) (4.69)

with homogeneous Neumann boundary conditions. Since L′ψ(s) = sψ′′(s), under suitable regu-
larity assumptions on βt the chain rule gives the alternative formulations

d

dt
βt = Dx ·

(
βtψ

′′(βt)∇βt)
)

= Dx ·
(
βt∇ψ′(βt)

)
. (4.70)

If we want to apply to this example the results of Theorem 4.12, we should check if the tangent
velocity field v given by

vt = −
∇Lψ(βt)

βt
= −∇ψ′(βt) for t > 0, (4.71)
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satisfies (3.11) or one of the conditions discussed in Remarks 3.6, 3.7, 3.8, which are strictly
related to the regularity of the solution βt.

Besides (3.11), in the following discussion we focus our attention on Remark 3.8 (and its
variants 3.10, 3.11). We distinguish some cases:
[(a) V is bounded and of class C2,α and β̄ ∈ Cα is bounded away from 0.] When{

V is bounded and of class C2,α for some α > 0, and
β̄ ∈ Cα(V ), 0 < βmin ≤ β̄(x) ≤ βmax for L d-a.e. x ∈ V ,

(4.72)

the maximum principle shows that the solution βt satisfies the same bound

0 < βmin ≤ βt(x) ≤ βmax ∀x ∈ V , t ∈ [0, T ]; (4.73)

by [29, Thm. 10.1, Chap. III;Thm. 7.1, Chap. V] the variational solution of (4.69) is Hölder
continuous in [0, T ]× V .

The smooth transformation ρ := Lψ(β) shows that ρ is a solution of the linear parabolic
equation

∂

∂t
ρ− a(t, x)∆ρ = 0 in (0, T )× V

with homogeneous Neumann boundary conditions, where a(t, x) = L′ψ(β(t, x)) is Hölder contin-
uous and satisfies 0 < amin ≤ a ≤ amax < +∞ in (0, T ]× V .

Standard parabolic regularity theory [29, Chap. IV] yields D2
xρ ∈ Cᾱ((0, T ) × V ) for some

ᾱ > 0; moreover, since ρ0 ∈ Cα(V ), too, then the intermediate Schauder estimates of [32, Thm
6.1] yield for every x0 ∈ V the existence of ε, δ > 0 such that

sup
(t,x)∈(0,T )×Bε(x0)

t1−δ‖D2
xρt(x)‖ < +∞, (4.74)

so that v satisfies (3.11).
[(b) The Heat/Porous medium equation in V = Rd.]
Let us consider the Heat/Porous medium equation in Rd, corresponding to the choice

Lψ(β) = βm, ψ(s) :=

{
1

m−1s
m if m > 1,

s log s if m = 1.
(4.75)

Following the approach of Remarks 3.8 and 3.11, we assume here that an open set P0 ⊂ Rd

exists such that
β̄ ∈ Cα(P0), β̄ > 0 in P0, β̄ ≡ 0 in Rd \ P0. (4.76)

We know (see [16, 18, 42] and also [23, Chap. 5, Thm. 3.1, 3.3]) that the solution β is Hölder
continuous in

(
(0, T ]×Rd

)
∪
(
{0}×P0

)
; still applying the local regularity theory we mentioned in

point (a), we obtain that D2
xβ, Dxψ

′(β) = Dxv are Hölder continuous in P , too, thus showing
that (3.35) is satisfied.

The Hölder assumption on β̄ shows that β is locally Hölder continuous in P up to the initial
time t = 0, too. Arguing as before, we obtain (4.74) for every x0 ∈ P0, which entails (3.36).
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In order to check (3.44) we will invoke the Aronson-Benilan estimate [7], [23, Chap. 5,
Lemma 2.1]

∆ψ′(βt) ≥ −k
t
, with k =

1
m− 1 + (2/d)

, i.e. Dx · vt(x) ≤
k

t
, ∀ (t, x) ∈ P. (4.77)

[(c) V is C2,α, possibly unbounded, and ∆Lψ(β̄) is a finite measure.] The local regularity
results we used in the previous points (a), (b) depend, in fact, only on the local behavior of
L′ψ around 0; let us thus assume that, in a suitable neighborhood (0, ε0), the function L′ψ has a
“power like” behaviour

c0β
κ0 ≤ L′ψ(β) ≤ c1β

κ1 ∀β ∈ (0, ε0), (4.78)

for given positive constants 0 < c0 ≤ c1, and 0 < κ1 ≤ κ0. Under this assumption and
(4.76), the regularity results of [37] (see also [19, Page 76]) yield the Hölder continuity of β
in
(
(0, T ) × V

)
∪
(
{0} × P0

)
. Arguing as in the previous points we still get D2

xβ ∈ C0(P ),

Dxψ
′(β) = Dxv ∈ C0(P ) and (4.74).

The only difference here is that we cannot invoke the regularizing effect (4.77), which seems
to depend on the particular form (4.75) of Lψ.

In this case, we should impose extra regularity properties on β̄ which guarantee (3.42) (and
therefore (3.37)): one possibility is to assume, in addition to (4.76), that

∆Lψ(β̄) is a finite measure. (4.79)

(4.79) and standard results for contraction semigroups in L1 yield

sup
t>0

∫
{x:βt(x)>0}

|∂tβ(t, x)| dx < +∞; (4.80)

for, the Brezis-Strauss resolvent estimates [11] and Crandall-Liggett [17] generation
Theorem show that the nonlinear operator u 7→ −∆Lψ(u) with domain D :=

{
u ∈ L1(V ) :

−∆Lψ(u) ∈ L1(V )
}

generates a contraction semigroup in L1, whose trajectories satisfy (4.80)
if (4.79) holds.

Since Lψ is an increasing function, we have

vt · ∇βt = −
∇Lψ(βt)

βt
· ∇βt ≤ 0 in P ;

taking into account (4.80), in order to prove (3.42) we should show that∫∫
P

∇Lψ(βt)
βt

· ∇βt dx dt < +∞. (4.81)

We argue by approximation as in the proof of Proposition 4.8 and we consider the same kind
of regularized functions `ε obtained from the entropy `(β) := β log β according to (4.42), which
satisfy the convexity condition (4.54) and

`ε(β)− ε ≤ β log β ≤ `ε(β) ∀β > 0. (4.82)
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(4.13) yields Lε(β) := Lε := ε`′ε(β)− `ε(β) ∈ L1(0, T ;W 1,1(V )) with∫ T

0

∫
V

|∇Lε(β)|2

β2
β dx dt < +∞ ∀ ε > 0.

It follows from the geodesic convexity of the functional Hε(β) :=
∫
V `ε(β) dx and the “Wasser-

stein chain rule” (see §10.1.2 in [6]) that the map t 7→ Hε(βt) is absolutely continuous and its
time derivative is

d

dt
Hε(βt) =

∫
V

vt · ∇Lε(β) dx = −
∫

V

∇Lψ(βt)
βt

DLε(βt)
βt

βt dx for L 1-a.e. t > 0.

Upon an integration in time, (4.82) and ε < e−1 yield∫
V
βT log βT dx+

∫∫
P∩{β>ε}

∇Lψ(βt)
βt

∇βt dx dt ≤
∫

V ∩{β̄>1−eε}
β̄
(
[log β̄]+ +

ε

1− eε

)
dx. (4.83)

Since β̄ is bounded, the right hand side of (4.83) is uniformly bounded as ε ↓ 0; moreover, the
finiteness of the second moment

∫
V |x|

2βT (x) dx < +∞ and Hölder inequality yield that the
entropy

∫
V βT log βT cannot take the value −∞ (see for instance Remark 9.3.7 in [6]); hence

passing to the limit as ε ↓ 0 we obtain (4.81).
We collect the above discussion and Theorem 4.12 in the following result

Corollary 4.14 (Convergence of iterated transport maps for diffusion equations) Let
V ⊂ Rd be an open set of class C2,α, let µ̄ = β̄L d ∈ P2(V ) and ψ : [0,+∞) → (−∞,+∞] be
satisfying (ψ 1), (ψ 2), (ψ 3), (ψ 4).
We assume that there exists an open set P0 ⊂ V such that (4.76) holds and that at least one of
the following conditions is satisfied:

P0 = V bounded of class C2,α and 0 < βmin ≤ β̄(y) ∀ y ∈ V , (4.84a)

V = Rd and Lψ(β) = βm for some m ≥ 1, (4.84b)

∂V ∈ C2,α, (4.78) holds, and ∆Lψ(β̄) is a finite measure in V . (4.84c)

If vt is the velocity vector field associated through (4.71) to the solution βt of the nonlinear
diffusion PDE (4.69) with initial condition β̄, then for every final time T > 0 there exist an
open set V0 with β̄L d(V \ V0) = 0 and a unique V -valued forward flow X which solves (3.8)
for every x ∈ V0.
X ∈ C1([0, T ]× V0;V ), X(t, ·)β̄L d = βtL d and the iterated transport maps T τ constructed as
in (4.57), (4.58) from the solution of the variational algorithm (4.21) converge to X:

lim
τ↓0

∫
V

max
[0,T ]

|T τ,·(x)−X(·, x)|2β̄(x) dx = 0 ∀T > 0. (4.85)

In the cases (4.84a) and (4.84b) we can always choose V0 ≡ P0.
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Proof. We can apply Theorem 4.12 in a time interval (0, T ′) with T ′ > T : conditions (ψ 1),
(ψ 2), (ψ 3), (ψ 4) together with Proposition 4.8 ensure that we are in the “Wasserstein gradient
flow” setting; each of the assumptions (4.84a,b,c) provides enough regularity on the limit vector
field

vt = −
∇Lψ(βt)

βt

in order to check (3.11) (in the case (4.84a)), or Remark 3.11 (in the case (4.84b)), or Remark
3.10 (in the case (4.84c))

Concerning the regularity of X, it follows by classical results on differential equations in the
first case and by (3.44) and Remark 3.11 in the second one (together with the identification
P0 = V0). In the third case, we can still apply (3.43) of Remark 3.11, by choosing ε < T ′ − T .

�

5 An application to gradient flows of polyconvex functionals

Basic notation for vector calculus and first variations

In this section we will deal with vector valued maps u = (ui)di=1 : U → V ⊂ Rd defined in an
open subset U of Rd with values in an open set V . In order to distinguish between the systems
of coordinates in U and in V , we will use the greek letters α, β, . . . for variables in U and latin
letters i, j, . . . for components in V .

We denote by Aiα the elements of the matrix representing a linear map A in L(Rd; Rd);
(AT )αi = Aiα is the usual transposed matrix, A · B = tr(ATB) =

∑
α,i A

i
αBiα denotes the scalar

product. The cofactor matrix of A is denoted by cof A = (cof A)iα and it satisfies the Laplace
identities

(cof A)T A = (det A)Id, i.e.
∑
i

(cof A)iαAiβ = δα,β det A. (5.1)

When A is invertible, (cof A)T = (det A)A−1.
For a given sufficiently regular vector map u, we denote by Du the matrix

Du = (Du)iα, with (Du)iα :=
∂ui

∂xα
; (5.2)

the divergence of a matrix valued map A : U → L(Rd; Rd) is defined as

(div A)i :=
∑
α

∂

∂xα
Aiα. (5.3)

We recall that any map u ∈W 1,d−1
loc satisfies

div
(
cofDu

)
= 0 in U . (5.4)
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Let F be a real map defined on (an open subset of) L(Rd; Rd); the differential of F and its
action on a matrix B can be represented as

DF (A)αi =
∂F

∂Aiα
(A), so that DF (A)B = DF (A)T · B =

∑
α,i

∂F

∂Aiα
(A)Biα. (5.5)

In particular,
if F (A) := Φ(det A), then DF (A) = Φ′(detA)(cof A)T . (5.6)

Let us now consider the functional

I(u) :=
∫

U
F (Du) dx =

∫
U

Φ(detDu) dx. (5.7)

If u is sufficiently regular, the first variation δI(u; ξ) along a smooth vector field ξ : U → Rd

with cofDunU orthogonal to ξ on ∂U (here nU denotes the exterior unit normal to ∂U ) yields

δI(u; ξ) =
d

ds
I(u + sξ)

∣∣∣
s=0

=
∫

U
Φ′(detDu)(cofDu) ·Dξ dx

= −
∫

U
div
(
Φ′(detDu)(cofDu)

)
· ξ dx.

(5.8)

Other kind of variations will play a crucial role in the following: here we are considering the
variation of the deformed state [25, Chap. 2, 1.5] induced by a given vector field η ∈ C1(V ;V )
with η · nV = 0 and u(U ) ⊂ V , and the induced flow in V

d

ds
Y (s, y) = η (Y (s, y))

Y (0, y) = y
for y ∈ V .

Thus we can evaluate

δ̄I(u;η) :=
d

ds
I(Y (s,u))

∣∣∣
s=0

=
∫

U
Φ′(detDu) detDu tr(Dyη(u)) dx (5.9)

which, in the case u is a diffeomorphism between U and V , corresponds to the usual Euler-
Lagrange first variation (5.8) with ξ := η◦u; for, the fact that u is a C1 diffeomorphism between
U and V gives that the normal to V at u(x), with x ∈ ∂U , is parallel to cofDu(x)nU (x), so
that ξ = η(u) is orthogonal to cofDu(x)nU (x) on ∂U . Then, (5.1) yields

δI(u;η ◦ u) =
∫

U
Φ′(detDu)(cofDu) · (Dyη(u)Du) dx

=
∫

U
Φ′(detDu) detDu((Du)−1)T · (Dyη(u)Du) dx

=
∫

U
Φ′(detDu) detDu tr(DT

y η(u)) dx = δ̄I(u;η), (5.10)

because ((Du)−1)T ·(Dyη(u)Du) = ((Du)T )−1·(Dyη(u)Du) = trace
(
((Du)T )−1(Du)TDT

y η(u)
)

=
trace(DT

y η(u).
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Gradient flow in L2

In [22], the authors build a smooth solution u of the nonlinear parabolic PDE (here we adopt
the same notation of that paper)

∂

∂t
u = div

(
DF (Du)T

)
= div

(
Φ′(detDu)(cofDu)

)
,

u(0, ·) = ū,
(5.11)

in (0, T )×U , corresponding to the gradient flow with respect to the L2 metric of the functional
I, since (5.11) has, at least formally, a natural variational formulation as

d

dt

∫
U

u · ξ dx = −δI(u; ξ) for every ξ ∈ C1(U ; Rd) with (cofDu)nU ⊥ ξ on ∂U . (5.12)

Here U , V ⊂ Rd are bounded open sets with a smooth boundary, ū : U → V belongs to
Diff (U ;V ), the class of C1 diffeomorphisms mapping ∂U onto ∂V with strictly positive deter-
minant, Φ : (0,+∞) → R is a smooth convex function with Φ′′ > 0, and the solution u of (5.11)
is built in such a way that the same properties are satisfied by u(t, ·) for any t ≥ 0. Precisely,
they show that the scalar quantity

β(t, y) := detDw(t, y) =
1

detDu(t,w(t, y))
, y ∈ V , with w(t, ·) := [u(t, ·)]−1, (5.13)

which is the Lebesgue density of the measure µt := (ut)#L d U , can be built solving the
nonlinear boundary value problem of diffusion type

∂

∂t
β = div

(
Φ′′
( 1
β

)Dβ
β2

)
= ∆

(
− Φ′

( 1
β

))
in (0,+∞)× V ,

Dβ(t, ·)nV (·) = 0 on (0, T )× ∂V ,

β(0, ·) = β̄ :=
1

detDū
◦ ū−1 in V ,

(5.14)

(notice that the map s 7→ −Φ′(1/s) is monotone increasing, thus the problem is parabolic). This
can be explained as follows: setting

ψ(s) := sΦ
(1
s

)
, s > 0, ψ(0) = lim

s↓0
sΦ
(1
s

)
= lim

r↑+∞

Φ(r)
r

, (5.15)

a change of variables gives I(u) =
∫
V ψ(β[u]) dy, and therefore we expect the gradient flow of I

to be related to the gradient flow of

φ(β) :=
∫

V
ψ(β) dy. (5.16)

Using the identities

Lψ(s) = sψ′(s)− ψ(s) = −Φ′
(1
s

)
, ψ′′(s) = s−3Φ′′(

1
s
), (5.17)
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the PDE (5.14) can be written as

∂

∂t
β = div

(
βDψ′(β)

)
= ∆(Lψ(β)) in (0,+∞)× V . (5.18)

As for the metric, again a change of variables (see [22] and also Lemma 5.5 below) shows that
it becomes W2 at the level of β, and Otto’s calculus (see [35], [36] and Example 4.4) shows that
(5.18) is indeed the gradient flow of φ with respect to W2.

A direct derivation is also possible, starting from the variational formulation of (5.11): first
of all we observe that changing variables inside the integral (5.9) yields

δ̄I(u;η) =
∫

V
Φ′(

1
β

) tr(Dη) dy = −
∫

V
Lψ(β) tr(Dη) dy. (5.19)

Now we choose a test vector field η of the form

η = (Dζ)T , with ζ ∈ C2
n(V ) :=

{
ζ ∈ C2(V ) : Dζ(y)nV (y) = 0 on ∂V

}
, (5.20)

and we observe that in this case ξ = (Dζ)T ◦ u and∫
U
∂tu · ξ dx =

∫
U
∂tu · (Dζ)T ◦ u dx =

d

dt

∫
U
ζ(u) dx =

d

dt

∫
V
ζβ dy; (5.21)

on the other hand (5.12) and (5.10) yield
∫
U ∂tu · ξ dx = δ̄I(u;η), so that (5.19) provides

d

dt

∫
V
ζβ dy =

∫
V
Lψ(β)∆ζ dy ∀ ζ ∈ C2

n(V ), (5.22)

which is just the weak formulation of (5.14).
Having built β, the remarkable fact is that one is able to build u solving a first order ODE

associated to the vectorfield

V i(t, y) := − ∂

∂yi
ψ′(β(t, y)), so that V := −ψ′′(β)

(
Dyβ

)T = −
DLψ(β)T

β
, (5.23)

and precisely solving {
Y ′(t, ȳ) = V (t,Y (t, ȳ)),
Y (0, ȳ) = ȳ

(5.24)

and setting ut(x) = Y (t, ū(x)). This is still a consequence of (5.12) by choosing an arbitrary
vector field of the form ξ := η ◦ u and applying (5.10) and (5.19): we obtain∫

U
∂tu(x) · η(u(x)) dx = −

∫
U

(DLψ(β))T

β
◦ u · η ◦ u dx = −

∫
V
DLψ(β) · η dy

=
∫

V
Lψ(β) tr(Dη) dy = −δ̄I(u;η) = −δI(u; ξ).

(5.25)

When V is bounded and of class C2,α the main result of [22], obtained along the lines of the
previous discussion (see also Example 4.4(a)), can be stated as follows.
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Theorem 5.1 (Evans-Gangbo-Savin) Let us assume that V is a bounded open set of class
C2,α; if u0 ∈ C1,α(U ;V ) ∩ Diff (U ;V ) then there exists a unique solution ut ∈ Diff (U ;V )
with ∂tu ∈ L2((0, T ) × U ; Rd) of the (distributional formulation of) (5.11): ut admits the
representation ut(x) := Y (t, ū(x)), where Y is defined (5.24), (5.23) and (5.14).

When V is unbounded or ū is not surjective or detDū is not bounded away from 0 and +∞, we
should consider a wider class of maps and a weaker notion of solution, which are closely related
to the notion of weak diffeomorphisms of [25, Chap. 2]. In this case, the first variations of the
functional (5.7) introduced in (5.8) and (5.9) are not equivalent and the right notion of solution
should take into account both the approaches, as it should be clear by the previous calculations.

Definition 5.2 (Weak diffeomorphism) We say that a Borel map u : U → V is a weak
diffeomorphism and we write d̃iff (U ;V ) if there exists a Borel set U0 ⊂ U such that

L d(U \U0) = 0, u is differentiable at all points of U0,

u : U0 → V is injective and detDu(x) > 0 for all x ∈ U0.
(5.26)

We say that a weak diffeomorphism u belongs to D̃iff (U ;V ) if there exists an open set U0 ⊂ U
satisfying (5.26) with u|U0

∈ C1(U0;V ).

Definition 5.3 (Weak solutions of the gradient flow) We say that a family ut ∈ d̃iff (U ;V )
with ∂tut ∈ L2((0, T )×U ; Rd) is a solution of (5.11) if Φ′(detDut) detDut ∈ L1(U ) and∫

U
∂tut · η(ut) dx = −

∫
U

Φ′(detDut) tr(Dyη(ut)) detDut dx L 1-a.e. in (0, T ), (5.27)

for every vector field η ∈ C1(V ;V ) with η · nV = 0 on ∂V .

Notice that the area formula [6, Lemma 5.5.3] gives that if u ∈ d̃iff (U ;V ) then

u#

(
L d U

)
= β[u]L d V with β[u](y) :=


1

detDu(x)
if y = u(x) for x ∈ U0,

0 if y ∈ V \ u(U0).
(5.28)

Moreover, it is easy to check that

I(u) = φ(β[u]) if either ψ(0) = 0 or L d ({y ∈ V : β[u](y) = 0}) = 0. (5.29)

The next result is the natural generalization of Theorem 5.1 when V is unbounded or the initial
datum ū is only in D̃iff (U ;V ) (thus allowing for the degeneracy of β[u]).

Theorem 5.4 (Existence and uniqueness of weak solutions) Let us assume that

ū ∈ D̃iff (U ;V ) ∩ L2(U ; Rd),
∫

U0

Φ(detDū(x)) dx < +∞, ū|U0
∈ C1,α, (5.30)
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where U0 is an open set with L d(U \U0) = 0 and that at least one of the following conditions
is satisfied:

V is bounded of class C2,α, 0 < βmin ≤ β̄ = β[ū] ≤ βmax < +∞ ∀ y ∈ V , (5.31a)

V = Rd, β̄ = β[ū] ∈ L∞(V ), Lψ(β) = βm for some m ≥ 1, (5.31b)

∂V ∈ C2,α, (4.78) holds, β̄ = β[ū] ∈ L∞(V ), ∆β̄ is a finite measure in V . (5.31c)

Then there exists a unique solution ut ∈ D̃iff (U ;V ) with ∂tu ∈ L2((0, T ) × U ; Rd) of (5.11)
according to Definition 5.3; it admits the representation ut(x) := Y (t, ū(x)), where Y is defined
by (5.24), (5.23) and (5.14).

Proof. We follow the same construction we already described in the “regular” case. Applying
Corollary 4.14 we find an open set V0 ⊂ u(U0) with L d(U0 \ u−1(V0)) = 0 and a flow Y :
[0, T ]× V0 → V solving (5.24) for the velocity V given by (5.23).

It is not restrictive to assume V0 = u(U0); setting u(t, x) := Y (t, ū(x)), x ∈ U0, we find
β(t, ·) = β[u(t, ·)] and therefore∫ T

0

∫
U0

|∂tu|2 dx dt =
∫ T

0

∫
U0

|V (t,u(t, x))|2 dx dt

=
∫ T

0

∫
V0

|V (t, y)|2 β(t, y) dy dt < +∞,

by the energy estimate (4.13) in the Wasserstein space of equation (5.14).
We then have for ρ ∈ C1

0 (0, T ) and η ∈ C1(V ;V ) with η · nV = 0,∫ T

0

∫
U0

ρ(t)∂tu · η(u) dx dt =
∫ T

0

∫
U0

ρ(t)V (t,u(t, x)) · η(u(t, x)) dx dt

=
∫ T

0
ρ(t)

∫
V0

−(DLψ(β))T

β
· ηβ dy dt

=
∫ T

0
ρ(t)

∫
V
Lψ(β) tr(Dη) dy dt

=
∫ T

0
ρ(t)

∫
U
−Φ′(detDu) tr(Dη(u)) detDu dx dt,

which yields (5.27), being ρ arbitrary. The uniqueness follows easily: for any other solution v,
choosing η = (Dζ)T as in (5.20) we find that β[v] is the unique weak solution β = β[u] of (5.14).
Arguing as above we obtain

∂tv = V (t,v) L d-a.e. in U

for L 1-a.e. t ∈ (0, T ). Possibly redefining v in a space-time negligible set we can assume that
v(·, x) is absolutely continuous, with derivative L 1-a.e. equal in (0, T ) to ∂tv(t, x), for L d-a.e.
x ∈ U . On the other hand, Fubini’s theorem gives that

∂tv = V (t,v) L 1-a.e. in (0, T )
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for L d-a.e. x ∈ U . As a consequence, v(·, x) solves the ODE for L d-a.e. x ∈ U . Invoking the
uniqueness of the flow (5.24) for ȳ ∈ V0 of Corollary 4.14 we conclude that v(t, x) = u(t, x).

�

Convergence of the variational approximation scheme

In [22] the authors raise the problem of the convergence of the variational formulation of the
Euler implicit scheme to their solution. Let τ > 0 be a time step and let uk be recursively
defined by minimizing in d̃iff (U ;V ) the functional

u 7→ Fτ (u;uk−1) :=
1
2τ

∫
U
|u− uk−1|2 dx+ I(u) (5.32)

with the initial condition u0 = ū.
We denote by βk the sequence of measure densities arising from the analogous recursive

minimization of the functional

β 7→ Gτ (β;βk−1) =
1
2τ
W 2

2 (β, βk−1) + φ(β), (5.33)

with φ as in (5.16) and the initial condition β0 = β̄ = β[ū] (see the previous section and, in
particular, Example 4.4).

Since the functional I (resp. φ) differs only by a constant if we perturb Φ (resp. ψ) by adding
a linear term λs (resp. a constant term λ), we can always assume that

ψ(0) = lim
s↓0

ψ(s) = lim
r→+∞

Φ(r)
r

is either 0 or +∞, (5.34)

and we have
I(u) = φ(β[u]) if either ψ(0) = 0 or φ(β) < +∞. (5.35)

In this correspondence, the (usual) convexity of φ is equivalent to the polyconvexity of I, whereas
the geodesic convexity (4.52), (4.54) of φ corresponds to the condition that the map s 7→ Φ(sd)
is convex and nonincreasing in (0,+∞), and it is equivalent to the convexity of I along a special
class of perturbations (closely related to the variation δ̄ of (5.9), see also (5.20), (5.21)), namely

t 7→ I(ηt ◦ u) is convex whenever ηt := (1− t)i + t(Dζ)T , with ζ : Rd → R convex. (5.36)

The following existence result for uk, together with some uniform estimates, has been proved in
[22] in the “regular” case, when V is bounded and 0 < βmin ≤ β̄ ≤ βmax < +∞.

Lemma 5.5 (Discrete estimates) Assume that

(i) U is an open set in Rd whose finite Lebesgue measure is normalized to 1, V is an open
(possibly unbounded) set of Rd with C2,α boundary;
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(ii) s 7→ sΦ(1/s) is smooth and convex in (0,+∞), and

lim
s↓0

Φ(s) = +∞, lim
s→+∞

Φ(s)
s

∈ {0,+∞};

(iii) ū ∈ d̃iff (U ;V ) ∩ L2(U ; Rd), β̄ = β[ū], Φ(ū) = φ(β̄) < +∞.

Then the variational problems (5.32) and (5.33) can be iteratively solved in d̃iff (U ;V ) and
P2(V ) respectively, they admit a unique solution with

βk = β[uk], uk = tk−1 ◦ uk−1, Fτ (uk;uk−1) = Gτ (βk;βk−1) ∀k ∈ N, (5.37)

where tk−1 is the optimal transport map between βk−1 and βk.
Finally, if 0 < βmin ≤ β̄(x) ≤ βmax < +∞, then all βk are Lipschitz continuous in V ,

0 < βmin ≤ βk ≤ βmax ∀k ∈ N (5.38)

and uk ∈ Diff (U ;V ) for all k ≥ 1.

Proof. First of all, we observe that the map u 7→ β[u]L d between d̃iff (U ;V ) (with the
L2-norm) and P2(V ) is non expansive, i.e.

W2(β[u1]L d, β[u2]L d) ≤ ‖u1 − u2‖L2(U ;Rd); (5.39)

for, we simply apply the very definition of Kantorovich-Wasserstein distance (2.5) with the plan
γ := (u1,u2)#L d U . In particular, (5.39) and (5.35) show that

Fτ (u,uk−1) ≥ Gτ (β[u];βk−1); inf
u∈gdiff (U ;V )

Fτ (u,uk−1) ≥ inf
β∈P2(V )

Gτ (β[u];βk−1). (5.40)

We also observe that for every u1 ∈ d̃iff (U ;V ) with β1L d := β[u1]L d ∈ P2(V ) and
β2L dP2(V ) there exists a unique weak diffeomorphism u2 such that

β2 = β[u2] and ‖u1 − u2‖L2(U ;Rd) = W2(β[u1]L d, β[u2]L d). (5.41)

In fact, Brenier Theorem yields the existence of a unique optimal transport t ∈ L2(β1; Rd) such
that t#β1L d = β2L d: thus, if u2 satisfies (5.41), then the plan γ := (u1,u2)#L d U is
optimal and therefore u2 = t ◦ u1. Moreover, t is L d-essentially injective and differentiable at
β1L d-a.e. point of V [24], so that u2 still belongs to d̃iff (U ;V ). It follows that

Fτ (u,uk−1) = Gτ (β[u];βk−1) ⇔ u = t ◦ uk−1 t#β
k−1L d = β[u]L d, t is optimal.

(5.42)
Therefore, the minimization problem (5.32) associated to Fτ is completely reduced to the anal-
ogous one associated to Gτ (5.33). By (iii) we know that β̄L d ∈ P2(V ); since the function ψ
defined by (5.15) is convex and lower semicontinuous,

lim
s→∞

ψ(s) = lim
s→∞

sΦ(1/s) = lim
r→0+

Φ(r)
r

= +∞,
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and Gτ (βk−1;βk−1) = φ(βk−1) < +∞, it follows that the minimum problem for Gτ (·;βk−1)
always admits a unique solution βk with βkL d ∈ P2(V ) (notice that, in the case ψ(0) > 0, the
assumption φ(β̄) < +∞ forces L d(V ) < +∞).

The estimate (5.38) (here V should be bounded) can be proved arguing as in [36], [1], while
the Hölder continuity of βk follows by elliptic regularity theory and the Euler-Lagrange equation,
which reads (see for instance [6, Lemma 10.1.2, Thm. 10.4.6])

DLψ(βk) =
sk−1 − i

h
βk ∈ L∞(V ), sk−1 := (tk−1)−1.

Since L′ψ(s) > 0 in [βmin, βmax] we conclude that βk are Lipschitz. The map uk defined in (5.37)
belongs to Diff (U ,V ) by the Caffarelli-Urbas regularity theory (see [12, 14, 13, 15], [39, 40]).

�

Before stating our final result, concerning the convergence of the discrete scheme, let us collect
some remarks which easily follows by the above proof and which we briefly discussed at the end
of the Introduction.

Remark 5.6 (Slope comparison) Recalling that [6, Lemma 3.1.5]

1
2
|∂φ|2(β) = lim sup

τ↓0
τ−1

(
φ(β)− inf

ρ
Gτ (ρ;β)

)
, (5.43)

and, analogously,

1
2
|∂I|2(u) = lim sup

‖v−u‖2→0

((
I(u)− I(v)

)+
‖u− v‖2

)2

= lim sup
τ↓0

τ−1
(
I(u)− inf

v
Fτ (v;u)

)
, (5.44)

(5.42) shows that

|∂I|(u) = |∂φ|(β) if u ∈ d̃iff (U ;V ), β = β[u], I(u) = φ(β) < +∞. (5.45)

On the other hand, when ψ satisfies (4.54), V is convex, and therefore the functional φ is
displacement convex according to (4.52), then [6, Thm. 10.4.9]

|∂φ|(β) < +∞ ⇐⇒ Lψ(β) ∈W 1,1
loc (V ), ∇Lψ(β) = βw for w ∈ L2(βL d; Rd) (5.46)

and

|∂φ|2(β) =
∫

V
|ξ|2β dy =

∫
V

∣∣∣∣∇Lψ(β)
β

∣∣∣∣2 β dy. (5.47)

If β ∈ L∞(V ) we can approximate w in L2(βL d; Rd) by smooth vector field with compact
support: a further integration by parts shows that

|∂φ|(β) = sup
{
−
∫

V
Lψ(β) · tr(Dη) dy : η ∈ C1

c (V ; Rd),
∫

V
|η|2 β dy ≤ 1

}
. (5.48)
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Recalling (5.19) and (5.10), if u ∈ Diff (U ;V ) we get

|∂φ|(β) = sup
{
δ̄I(u;η) = δI(u;η ◦ u) :

∫
U
|η(u(x))|2 dx ≤ 1

}
, (5.49)

and therefore
|∂φ|(β) = |∂I|(u) ≤ ‖divDF (Du)‖L2(U ). (5.50)

The converse inequality follows easily by taking variations of I along smooth vector field ξ ∈
C∞
c (U ; Rd) and yields the identity

|∂I|(u) = ‖divDF (Du)‖L2(U ) ∀u ∈ Diff (U ;V ). (5.51)

Theorem 5.7 (Convergence of u[t/τ ]) Let U , V be open sets in Rd with L d(U ) < +∞.
Assume that

(a) ū fulfils (5.30) for some open set U0 ⊂ U with full measure in U ;

(b) at least one of the conditions (5.31a,b,c) holds;

(c) Φ satisfies the assumption (ii) in Lemma 5.5.

Then
lim
τ↓0

u[t/τ ] = ut in L2(U ), locally uniformly in [0,+∞)

and ut is the unique weak solution of (5.11), according to Definition 5.3 and Theorem 5.4.

Proof. The discussion of Example 4.4 shows that the initial datum β̄ and the form of the
equation satisfy the conditions of Theorem 4.12.

Recall that u = Y (t, ū), with Y flow of the vectorfield vt. By applying (5.37) repeatedly
we obtain uk = T k ◦ ū, where T k is the iterated transport map defined in (4.58).

Then, Theorem 4.12 ensures (recall that tτ,t = T t/τ when t/τ is an integer)

lim
τ↓0

∫
V

max
t∈[0,T ]

|T [t/τ ](·)− Y (t, ·)|pβ̄(y) dy = 0 ∀T > 0. (5.52)

By taking a right composition with ū in (5.52) the proof is achieved. �
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