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Abstract. In stochastic partial differential equations it is important to have pathwise
regularity properties of stochastic convolutions. In this note we present a new sufficient
condition for the pathwise continuity of stochastic convolutions in Banach spaces.
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1. Introduction and main result

Let (Ω,A ,P) be a probability space with filtration (Ft)t>0. Let (S(t))t>0 be

a strongly continuous semigroup on a Banach space X . We will be interested in

obtaining conditions for path-continuity of the stochastic convolution

S ⋄G(t) :=

∫ t

0

S(t− s)G(s) dWH(s),

where G : R+ × Ω → L (H,X) is such that the stochastic integral with respect to

the cylindrical Brownian motion WH exists. There are many such continuity results

in literature (see [4], [6], [9], [16], [17], [27] and references therein).

Our methods to obtain continuity results are based on techniques similar to the

ones in [6], [16], [17]. The results are comparable with [6] but are of independent

interest. The methods we present can also be applied to other stochastic convo-

lutions
∫ t

0 S(t − s) dM(s), where M is an X-valued local martingale provided one
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has a “decent” stochastic integration theory for integration with respect to M . For

instance, some of our methods can also be applied in the case WH is replaced by

a continuous local martingale (see [36]) or a Lévy process (cf. [5]). In this paper this

has not been considered and we leave this to the interested reader.

For σ ∈ (0, π) let

Σσ := {λ ∈ C \ {0} : arg(λ) < σ}
denote the open sector of angle σ in the complex plane. A closed and densely defined

operator A on X is sectorial of type ϕ ∈ [0, π) if A is one-to-one with dense range

and for all σ ∈ (ϕ, π) we have Σσ ⊆ ̺(A) and

sup
λ∈Σσ

‖λR(λ,A)‖ <∞.

Here, R(λ,A) := (λ−A)−1.

We introduce the following condition on a sectorial operator A.

(H) The operator −A has a bounded H∞-calculus of angle < π/2.

For details on the H∞-calculus for sectorial operators we refer the reader to [15], [20],

[24], [37]). The condition (H) implies that A generates an analytic semigroup S(t) =

etA. Many differential operators on Lq-spaces with q ∈ (1,∞) which generate an

analytic semigroup satisfy condition (H). We will show how one can use condition (H)

to obtain a continuity result for stochastic convolutions. Below we present several

situations which are not covered by the existing literature. The existing results

always require the semigroup to be contractive or quasi-contractive. Recall that S(t)

is called quasi-contractive if there exists a w ∈ R such that for all t > 0, ‖S(t)‖ 6 ewt.

The next theorem is our first main result. It will be formulated for UMD Banach

spacesX of type 2. Recall thatX = Lq with q ∈ [2,∞) is an example of a UMD space

of type 2. Moreover, every space which is isomorphic to a closed subspace of Lq with

q ∈ (1,∞) is UMD and of type 2. For UMD spaces of type 2 a class of stochastically

integrable processes is given by the adapted and strongly measurable processes G for

which G ∈ L2(R+; γ(H,X)) almost surely (see Proposition 2.1 for details). The set of

all adapted G which are in L2(R+; γ(H,X)) is denoted by L0
F

(Ω;L2(R+; γ(H,X))).

For details on the space of γ-radonifying operators γ(H,X) we refer to [25].

Theorem 1.1. Let X be a UMD space of type 2. Assume A satisfies hypothe-

sis (H). Then for all G ∈ L0
F

(Ω;L2(R+; γ(H,X))) the process S ⋄ G has a version
with continuous paths. Moreover, for all p ∈ (0,∞), the following maximal estimate

holds:

(1.1)
(
E sup

t>0
‖S ⋄G(t)‖p

)1/p

6 C1C2(E‖G‖p
L2(R+;γ(H,X)))

1/p,

where C1 depends on A, and C2 depends on X and p.
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As a corollary by an easy translation argument one can prove a version on bounded

intervals [0, T ] in the case where only A−w satisfies hypothesis (H) for some w > 0.

This gives an extra exponential factor ewT .

The proof of Theorem 1.1 will be given in Section 2 and uses a dilation argument

in a spirit similar to [16], [17]. However, the enlargements of the spaces we need to

consider are more complicated. After the first version of this paper was written we

found out that Theorem 1.1 was also proved by Seidler in the setting X = Lq with

q ∈ [2,∞) (see [33]).

Under different conditions on the Banach space (see Section 3) it was proved

in [6] that for every A for which S(t) is (quasi)-contractive, there exists a continuous

version of S⋄G. Our result is not covered by this result since there are many interest-
ing examples of differential operators A which satisfy (H), but for which S(t) is not

quasi-contractive, or not known to be quasi-contractive. For instance in [21] it was

proved that semigroups generated by differential operators of order higher than two

are never contractive in Lq with q 6= 2. Moreover, second order differential opera-

tors with irregular coefficients are often not quasi-contractive (see [23, Theorems 1.1

and 1.2]). Except for trivial cases, almost no positive results on quasi-contractiveness

of semigroups generated by systems of differential operators are known. The only

(easy to describe) class of scalar differential operators which generate an analytic

semigroup which is quasi-contractive seems to be second order differential operators

in divergence form with smooth coefficient. Already in [2] it was shown that un-

der fairly general boundary conditions these operators generate a quasi-contractive

semigroup.

On the other hand, [6] can be applied for instance to translation semigroups on Lp

with p ∈ [2,∞). This is not covered by Theorem 1.1, because condition (H) implies

analyticity of the semigroup. In Section 3 we present an alternative approach to

obtain Theorem 1.1 with slightly different assumptions on the Banach space X .

The following frequently arising examples in applications are not covered by the

continuity theorem in [6].

Example 1.2. Let q ∈ (1,∞). Let A be a system of second order operators on

a C2-domain O ⊂ R
n:

(Af)(x) =
n∑

i,j=1

aij(x)DiDjf(s) +
n∑

i=1

bi(x)Dif(x) + c(x)f(x)

with Dirichlet boundary conditions. Let X = Lq(O). If aij ∈ Cε(O;CN×N ) are

uniformly parameter elliptic on O, and bi ∈ L∞(O;CN×N ) and c ∈ L∞(O;CN×N ),

then A − w satisfies (H) (see [11]) for some w ∈ R large enough. Therefore, if
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q ∈ [2,∞), then Theorem 1.1 is applicable. However, S(t) is not known to be quasi-

contractive in this general situation.

The example can also be extended to systems of higher order elliptic operators as

long as the Lopatinskii-Shapiro conditions hold (see [11]). As we already said before

the semigroups generated by such higher order operators are never contractive.

In Section 4 we prove another result on the path-continuity of S ⋄ G. Here we
assume less on the Banach space X and on the processes G. The result there covers

all Lq-spaces with q ∈ (1,∞).

2. Proof of Theorem 1.1

Before we give the proof of the theorem let us recall the following result on stochas-

tic integration theory. We refer to [4] and [26] for details.

Proposition 2.1. Assume X is a UMD Banach space of type 2. If G : R+ ×
Ω → γ(H,X) is adapted and strongly measurable and G ∈ L2(R+; γ(H,X)) a.s.,

then G is stochastically integrable with respect to WH , and the X-valued process

t 7→
∫ t

0 G(s) dWH(s) is an a.s. pathwise continuous local martingale. Moreover, for

all p ∈ (0,∞) one has

(2.1) E

(
sup
t>0

∥∥∥∥
∫ t

0

G(s) dWH(s)

∥∥∥∥
p)

6 Cp
p,X‖G‖p

Lp(Ω;L2(R+;γ(H,X))),

where Cp,X depends only on p and X .

The case p 6 1 was not considered in [4] or [26], but can easily be obtained by an

application of Lenglart’s inequality (see [22]).

Remark 2.2. Recently, in [33] Seidler found the optimal asymptotic behavior

of Cp,X from (2.1). Using the result of [29] he showed that if X is 2-smooth, then

there exists a constant CX such that Cp,X 6 CX
√
p for p > 2. This result applies to

our setting in Proposition 2.1, since UMD spaces of type 2 have martingale type 2

(see [3]) and such spaces can be renormed in such a way that their norm is 2-smooth

(see [30]). An alternative proof of the behavior of the constant in the setting of

Lq-spaces based on interpolation can be found in Corollary A.4 below.

Lemma 2.3. For a Banach space X the following assertions hold:

(1) If X has type 2, then also the space γ(L2(R+;H), X) has type 2.

(2) If X has UMD, then also the space γ(L2(R+;H), X) has UMD.

746



P r o o f. It is well known that the assertion holds if the space γ(L2(R+;H), X) is

replaced by L2(Ω;X). Now the result follows since γ(L2(R+;H), X) is isometric to

a closed subspace of L2(Ω;X), and therefore inherits the Banach spaces properties

type 2 and UMD. �

P r o o f of Theorem 1.1. Let Y = γ(L2(R), X). By [13] the boundedness of the

H∞-calculus with angle < π/2 yields the following dilation result:

There are J ∈ L (X,Y ), P ∈ L (Y ) and (U(t))t∈R in L (Y ) such that:

(i) There are c, C > 0 such that for all x ∈ X , one has c‖x‖ 6 ‖Jx‖Y 6 C‖x‖.
(ii) P is a projection onto J(X).

(iii) (U(t))t∈R is a strongly continuous group on Y with ‖U(t)y‖Y = ‖y‖Y for all

y ∈ Y .

(iv) For all t > 0 one has JS(t) = PU(t)J .

Clearly, we have

(2.2) JS ⋄G(t) =

∫ t

0

JS(t− s)G(s) dWH(s) = PU(t)

∫ t

0

U(−s)JG(s) dWH(s).

To see that the latter stochastic integral exists in Y , note that s 7→ U(−s)JG(s) is

strongly measurable and adapted, and

‖U(−s)JG(s)‖L2(R+;γ(H,Y )) 6 C‖G‖L2(R+;γ(H,X)) <∞ a.s.

Since Y has UMD and type 2 by Lemma 2.3, it follows from Proposition 2.1 that t 7→∫ t

0
U(−s)JG(s) dWH(s) exists and has a version which is a.s. pathwise continuous.

Therefore, by (2.2) and the strong continuity of U(t) it follows that JS ⋄ G has
a version which is a.s. pathwise continuous. By (i) also S ⋄G has a version which is
a.s. pathwise continuous. Moreover, if G ∈ Lp(Ω;L2(R+; γ(H,X))) then using (2.2)

and Proposition 2.1 one obtains the estimate

E

(
sup
t>0

‖S ⋄G(t)‖p
)

6 c−p
E

(
sup
t>0

‖JS ⋄G(t)‖p
Y

)

= c−p
E

(
sup
t>0

∥∥∥∥PU(t)

∫ t

0

U(−s)JG(s) dWH(s)

∥∥∥∥
p

Y

)

6 c−p‖P‖p
E

(
sup
t>0

∥∥∥∥
∫ t

0

U(−s)JG(s) dWH(s)

∥∥∥∥
p

Y

)

6 c−p‖P‖pCp
p,Y ‖U(−s)JG(s)‖p

Lp(Ω;L2(R+;γ(H,Y )))

6 c−p‖P‖pCp
p,Y C

p‖G‖p
Lp(Ω;L2(R+;γ(H,X))).

This completes the proof of (1.1) with C1 = c−1C‖P‖ and C2 = Cp,Y . �
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It is natural to ask whether one also has exponential estimates (cf. [6], [17] and

references therein) for sup
t>0

‖S ⋄ G(t)‖. This is indeed the case as follows from the
next result.

Theorem 2.4. Assume X is a UMD Banach space with type 2. Assume condi-

tion (H) holds. If G ∈ L0
F

(Ω;L2(R+; γ(H,X))) is such that for someM > 0, almost

surely

‖G‖L2(R+;γ(H,X)) 6
√
M,

then for every R > 0,

P

(
sup
t>0

‖S ⋄G(t)‖ > λ
)

6 2 exp
(
− λ2

2eMC2
1B

2
X

)
,

where C1 is as in Theorem 1.1 and BX only depends on X .

P r o o f. It follows from Remark 2.2 and Lemma 2.3 that Cp,Y 6 CY
√
p for

p > 2. Therefore, we can conclude that C2 from (1.1) satisfies C2 = Cp,Y 6 CY
√
p

for all p ∈ [2,∞). Using a power series argument as in [17] it follows from (1.1) that

for any ε > 0

E exp(ε sup
t>0

‖S ⋄G(t)‖2) =
∑

n>0

E sup
t>0

εn‖S ⋄G(t)‖2n

n!
6

∑

n>0

C2n
1 C2n

2 Mn ε
n

n!

=
∑

n>0

C2n
1 C2n

Y (2n)nMn ε
n

n!

6
∑

n>0

C2n
1 C2n

Y 2nMnεnen =: I,

where we used n! > nne−n in the last step. Clearly, the above expression I = 2 for

ε = 2−1e−1M−1C−2
1 C−2

Y . The exponential estimate now follows from

P

(
sup
t>0

‖S ⋄G(t)‖
)

> λ) = P

(
exp(ε sup

t>0
‖S ⋄G(t)‖2) > exp(ελ2)

)

6 e−ελ2

E exp
(
ε sup

t>0
‖S ⋄G(t)‖2

)
6 2e−ελ2

.

�

In the next section we present an entirely different approach to exponential tail

estimates based on [6], which has the advantage that we do not need to have optimal

estimates as p→ ∞. A disadvantage is that it is more difficult and the constants in
the exponential estimate are less explicit.
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3. Alternative approach to Theorem 1.1

In this section we present an alternative approach to obtain a version of Theo-

rem 1.1 with a slightly different assumption on the geometry of the Banach space X

taken from [6]. For r ∈ [2,∞) consider the following condition on X :

(Cr) The function ϕ : X → R defined by ϕ(x) = ‖x‖r is twice continuously Fréchet

differentiable and there are constants k1, k2 > 0 such that

(3.1) ‖ϕ′(x)‖ 6 k1‖x‖r−1 and ‖ϕ′′(x)‖ 6 k2‖x‖r−2.

If (Cr) holds for some r ∈ [2,∞), then one can show that (Cs) holds for all s > r.

In particular, for X = Lp with p ∈ [2,∞), (Cr) holds for all r ∈ [p,∞). Furthermore,

let us note that (C2) can only hold for spaces which are isomorphic to a Hilbert space

(see [12, Fact 1.0 in V.I]). In particular, (C2) does not hold for any X = Lp with

p ∈ (2,∞).

The estimates (3.1) are the ones used in [6] in order to obtain results on path-

continuity under the additional assumption that S(t) is a contraction semigroup.

The following result will allow us to relate our setting of Theorem 1.1 to the setting

in [6].

Proposition 3.1. Let X be a Banach space which satisfies (Cr) for some r ∈
[2,∞). Assume A satisfies hypothesis (H). Then there exists an equivalent norm ||| · |||
onX for whichX also satisfies (Cr) with the same constants, and S(t) is a contraction

semigroup.

P r o o f. By hypothesis (H) and [19] we can define the following equivalent norm

on X :

|||x||| = ‖t 7→ (−A)1/2S(t)x‖γr(R+;X).

Here for r = 2, γ2(R+;X) = γ(R+;X) is as in [26], [27]. For r ∈ (2,∞), γr(R+;X) is

defined using the Lr(Ω;X)-norms of the corresponding Gaussian sums (which are all

equivalent by the Kahane-Khintchine inequalities). Here (Ω,A ,P) is a probability

space. We claim that Lr(Ω;X) satisfies (Cr) with the same constants k1 and k2.

Indeed, one can show that the function ψ : X → R given by ψ(y) = ‖y‖r
Lr(Ω;X)

satisfies

ψ′(y)v =

∫

Ω

ϕ′(y(ω))u(ω) dP(ω), u ∈ Lr(Ω;X),

ψ′′(y)(u, v) =

∫

Ω

ϕ′′(y(ω))(u(ω), v(ω)) dP(ω), u, v ∈ Lr(Ω;X).

Now the claim follows from Hölder’s inequality and the assumption on X .
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As γr(R+;X) is a closed subspace of Lr(Ω;X), it also satisfies (Cr) with con-

stants k1 and k2. Finally, S is a contraction semigroup in (X, ||| · |||), since

|||S(s)x||| = ‖t 7→ (−A)1/2S(t+ s)x‖γr(R+;X)

= ‖t 7→ (−A)1/2S(t)x‖γr([s,∞);X) 6 |||x|||,

where we have used the left ideal property in γr(R+;X) in the last line. �

As a consequence we obtain the following result.

Theorem 3.2. Let X be a Banach space which satisfies condition (Cr). Assume

condition (H) holds. Then for all G ∈ L0
F

(Ω;L2(R+; γ(H,X))) the process S ⋄G has
a version with continuous paths. Moreover, for all p ∈ (0,∞), the following maximal

estimate holds:

(3.2)
(
E sup

t>0
‖S ⋄G(t)‖p

)1/p

6 C1C2

(
E‖G‖p

L2(R+;γ(H,X))

)1/p
,

where C1 depends on A, and C2 depends on X and p.

P r o o f. First let p > r. Then X satisfies (Cp). By Proposition 3.1 we can find

an equivalent norm ||| · ||| on X which satisfies (Cp) and for which S is a contraction

semigroup. Let b, B > 0 be such that b|||x||| 6 ‖x‖ 6 B|||x|||. By [6, Theorem 1.1] we
obtain a version with continuous paths. Moreover, by [6, (1.2)] we can find a constant

K depending on the constants in (3.1) and p such that

(
E sup

t>0
‖S ⋄G(t)‖p

)1/p

6 B
(
E sup

t>0
|||S ⋄G(t)|||p

)1/p

6 BK
(
E|||G|||pL2(R+;γ(H,X))

)1/p

6 BKb−1
(
E‖G‖p

L2(R+;γ(H,X))

)1/p
.

This proves the result with C1 = Bb−1 and C2 = K for p > r. For 0 < p < r,

the result follows by a standard application of Lenglart’s stopping time argument

(see [22]). �

One drawback of the above approach is that the constant C2 that comes from the

proof of [6, Theorem 1.1] is somewhat complicated and probably not optimal. On

the other hand, by [6, Theorem 1.2] we immediately get exponential estimates.

Theorem 3.3. Let X be a Banach space which satisfies condition (Cr). Assume

condition (H) holds. If G ∈ L0
F

(Ω;L2(R+; γ(H,X))) is such that for some M > 0,

almost surely

‖G‖L2(R+;γ(H,X)) 6
√
M,
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then for every R > 0,

P

(
sup
t>0

‖S ⋄G(t)‖ > R
)

6 3 exp
(
− R2

C1C2M

)
,

where C1 depends on A and C2 depends on X .

P r o o f. Let ||| · ||| be as in the proof of Theorem 3.2. We write X̃ for X with the
norm ||| · |||. Then

‖G‖2
L2(R+;γ(H,X̃))

6 b−2‖G‖2
L2(R+;γ(H,X)) 6 b−2M.

Therefore, [6, Theorem 1.2] implies that there is a constant K > 0 depending on p

and X such that

P

(
sup
t>0

‖S ⋄G‖ > R
)

6 P

(
sup
t>0

|||S ⋄G(t)||| > R/B
)

6 3 exp
(
− R2

B2b−2KM

)
.

The result follows with C1 = B2b−2 and C2 = K. �

4. Extensions of the results for spaces with property (α)

In this section we present a result which does not require the type 2 assumption

on the Banach space X . However, we do assume X is a UMD space. In this setting

the space of integrable processes is described by the space L0
F

(Ω; γ(R+;H,X)) and

one has the following result (see [26] for details):

Proposition 4.1 ([26], Theorems 5.9, 5.12). Let E be a UMD Banach space and

let p ∈ (0,∞) be fixed. For an adapted process Φ: R+×Ω → L (H,X) the following

are equivalent:

(1) The process Φ is stochastically integrable with respect to WH .

(2) Φ(·, ω) ∈ γ(R+;H,X) for a.e. ω ∈ Ω.

In this situation we have that t 7→
∫ t

0 Φ dWH is a.s. pathwise continuous. Further-

more, for all p ∈ (0,∞), there exist constants cγp,X , C
γ
p,X > 0 such that

cγp,XE‖Φ‖p
γ(0,T ;H,X) 6 E sup

t∈[0,T ]

∥∥∥∥
∫ t

0

Φ dWH

∥∥∥∥
p

6 Cγ
p,XE‖Φ‖p

γ(0,T ;H,X).

The case 0 < p 6 1 was not considered in [26], but can easily be obtained by an

application of Lenglart’s inequality.
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In the next result we need that the Banach space X has the so-called property (α)

(see [31] for details). Examples of UMD spaces with property (α) are X = Lq

with q ∈ (1,∞) or any space which is isomorphic to a closed subspace of Lq with

q ∈ (1,∞).

Theorem 4.2. Let X be a UMD space with property (α). Assume A satisfies

hypothesis (H). Then for all G ∈ L0
F

(Ω; γ(R+;H,X)) the process S ⋄G has a version
with continuous paths. Moreover, for all p ∈ (0,∞), the following maximal estimate

holds:

(4.1)
(
E sup

t>0
‖S ⋄G(t)‖p

)1/p

6 C1C2

(
E‖G‖p

γ(R+;H,X)

)1/p
,

where C1 depends on A and w, and C2 depends on X and p.

In the case that X has type 2 and property (α) the assertion in Theorem 4.2

is stronger than Theorem 1.1. Indeed, this follows from the fact that for type 2

spaces X the space γ(R+;H,X) is larger than L2(R+; γ(H,X)) (see [28], [32]).

Theorem 4.2 applies to the same situation as in Example 1.2.

Example 4.3. Let q ∈ (1,∞). Let A and X be as in Example 1.2. Then as

before A − w satisfies (H) for some w ∈ R large enough. Therefore, Theorem 4.2

is applicable for any q ∈ (1,∞). Moreover, even for q ∈ [2,∞) the assertion of

Theorem 4.2 leads to stronger results in this example.

The proof of Theorem 4.2 is more involved. We need to apply property (α) to

have better structural properties of the group used in the dilation argument.

P r o o f of Theorem 4.2. Let Y, J ∈ L (X,Y ), P ∈ L (Y ) and (U(t))t∈R in

L (Y ) be as in the proof of Theorem 1.1. The equality (2.2) still holds. However,

we need some arguments to see that the stochastic integral
∫ t

0 U(−s)JG(s) dWH(s)

exists in Y . Indeed, note that s 7→ U(−s)JG(s) is strongly measurable and adapted.

Recall from [13] that U(r) ∈ L (Y ) is the tensor extension (in the sense of [19]) of the

usual right-translation operator on L2(R;H). Since X has property (α), it follows

from [14, Theorem 3.18] that (U(r))r∈R ⊆ L (Y ) is γ-bounded by some constant αX .

Now the multiplier result of [19] shows that s 7→ U(−s)JG(s) is in γ(R+;H ;X) a.s.

and

‖U(−s)JG(s)‖γ(R+;H,Y ) 6 αX‖JG(s)‖γ(R+;H,Y )(4.2)

6 αXC‖G‖γ(R+;H;X) <∞ a.s.,

where the last step follows from the left-ideal property. Since Y has UMD by

Lemma 2.3, it follows from Proposition 4.1 that t 7→
∫ t

0 U(−s)JG(s) dWH(s) ex-

ists and has a version which is a.s. pathwise continuous. Therefore, by (2.2) and the
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strong continuity of U(t) it follows that JS ⋄G has a version which is a.s. pathwise
continuous. As in the proof of Theorem 1.1, by (i) also S ⋄ G has a version which
is a.s. pathwise continuous. Moreover, if G ∈ Lp(Ω; γ(R+;H,X)) we can use (2.2),

Proposition 4.1 and (4.2) to obtain the estimate

E

(
sup
t>0

‖S ⋄G(t)‖p
)

6 c−p
E

(
sup
t>0

‖JS ⋄G(t)‖p
Y

)

= c−p
E

(
sup
t>0

∥∥∥∥PU(t)

∫ t

0

U(−s)JG(s) dWH(s)

∥∥∥∥
p

Y

)

6 c−p‖P‖p
E

(
sup
t>0

∥∥∥∥
∫ t

0

U(−s)JG(s) dWH(s)

∥∥∥∥
p

Y

)

6 c−p‖P‖p(Cγ
p,Y )p‖U(−s)JG(s)‖p

Lp(Ω;γ(R+;H,X))

6 c−p‖P‖p(Cγ
p,Y )pαp

XC
p‖G‖p

Lp(Ω;γ(R+;H,X)).

This completes the proof of (1.1) with C1 = c−1C‖P‖ and C2 = Cγ
p,Y αX . �

At this moment we do not know if there are exponential tail estimates in the

general setting of Theorem 4.2. However, also in this setting there is some hope

that Cγ
p,Y 6 CX

√
p for p large, and by the argument in Theorem 2.4 this would yield

exponential tail estimates again. Recently, in [8] it has been proved that Cγ
p,Y 6 CXp

for p large. This yields exponential estimates, but no exponential quadratic estimates

as one would expect.

Appendix A. Optimal constants in the Burkholder-Davis-Gundy

inequality for stochastic integrals

For a Banach space X and p ∈ (0,∞) let Kp,X be the allest constant K such that

(A.1) sup
t>0

E

(∥∥∥∥
∫ t

0

G(s) dWH(s)

∥∥∥∥
p)

6 Kp‖G‖p
Lp(Ω;L2(R+;γ(H,X)))

for all G ∈ Lp
F

(Ω;L2(R+; γ(H,X))). If there exists no such constant K, we set

Kp,X = ∞. Recall from Proposition 2.1 that (A.1) holds for some K if X is a UMD
space of type 2. Moreover, in [33] it has been proved that Kp,X 6 KX

√
p for p > 2

(also see Remark 2.2). Below we provide an alternative proof of this fact for the

case X = Lq with q ∈ [2,∞). Also recall from real stochastic analysis that there is

a constant b > 0 such that for all p > 2, Kp,R 6 b
√
p (see [10]).
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Proposition A.1. Let X0 and X1 be Banach spaces for which (A.1) holds and

which form an interpolation couple. Assume X0 is reflexive. Then the complex

interpolation spaces Xθ = [X0, X1]θ with θ ∈ [0, 1] satisfies (A.1) with

Kp,Xθ
6 K1−θ

p,X0
Kθ

p,X1
.

P r o o f. One easily checks that (A.1) implies that X1 and X2 have type 2

(see [32]). Therefore, X1 and X2 are K-convex and this implies

[γ(H,X0), γ(H,X1)]θ = γ(H,Xθ)

(see [18, Proposition 2.3] or [34]).

Fix t ∈ R+ and let Y = Lp
F

(Ω;L2(0, t)). Clearly, Y is a Banach function space.

As in [7] write Y (X) for the X-valued strongly measurable and adapted processes g

with values in X for which ‖g‖Y (X) := ‖‖g‖X‖Y < ∞. We claim that Y (γ(H,X0))

is reflexive. Indeed, note that γ(H,X0) is isometric to a closed subspace of L
2(Ω̃;X0)

for some probability space (Ω̃, F̃ , P̃), and the latter is reflexive since X0 is reflexive.

Therefore, γ(H,X0) is reflexive as well. Now the claim follows from the fact that

Y (γ(H,X0)) is a closed subspace of the reflexive space L
p(Ω;L2(0, t; γ(H,X0))).

By [7, 13.5] we obtain

[Y (γ(H,X0)), Y (γ(H,X1))]θ = Y ([γ(H,X0), γ(H,X1)]θ) = Y (γ(H,Xθ)).

Similarly, one has

[Lp(Ω;X0), L
p(Ω;X1)]θ = Lp(Ω;Xθ).

Let T : Y (γ(H,Xi)) → Lp(Ω;Xi) be defined by TG =
∫ t

0 G(s) dWH(s). Then

‖T ‖Y (γ(H,Xi))→Lp(Ω;Xi) 6 Kp,Xi
for i = 1, 2. Consequently, since [·, ·]θ is an (ex-

act) interpolation method (see [35, Theorem 1.9.3]), we obtain

‖T ‖Y (γ(H,Xθ))→Lp(Ω;Xθ) 6 K1−θ
p,X0

Kθ
p,X1

.

Since t ∈ R+ is arbitrary, we obtain Kp,Xθ
6 K1−θ

p,X0
Kθ

p,X1
. �

Lemma A.2. Let p ∈ [2,∞). The following assertions hold:

(1) If (O,Σ, µ) is a (nonempty) σ-finite measure space, then Kp,Lp(O) = Kp,R.

(2) If X is a Hilbert space with nonzero dimension, then Kp,X = Kp,R.

P r o o f. (1) This follows from the Fubini theorem. However, due to the operator

valued setting some technicalities have to be overcome. Write X = Lp(O). By
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a density argument, it suffices to consider adapted step processes G which take

values in the finite rank operators, i.e.

G =
N∑

n=1

1(tn−1,tn]

M∑

m=1

1Amn

J∑

j=1

hj ⊗ xjmn.

Here 0 = t0 < t1 < . . . < tN = t, the sets (Amn)M
m=1 are in Ftn

, (hj)
J
j=1 in H are

orthonormal and (xjmn)j,m,n are in X .

Let g : R+ × Ω × O → H be given by

g =

N∑

n=1

1(tn−1,tn]

M∑

m=1

1Amn

J∑

j=1

xjmn ⊗ hj.

Now fix some time t > 0. Recall that γ(H,R) = H . By the Fubini theorem we can

write

E

(∥∥∥∥
∫ t

0

G(s) dWH(s)

∥∥∥∥
p

X

)
=

∫

O

E

∣∣∣∣
∫ t

0

g(s, ·, r) dWH(s)
∣∣∣
p

dµ(r)

6 Kp
p,R

∫

O

‖g(·, ·, r)‖p
Lp(Ω;L2(0,t;H)) dµ(r)

= Kp
p,R‖g‖

p
Lp(Ω;Lp(O;L2(0,t;H)))

(i)

6 Kp
p,R‖g‖

p
Lp(Ω;L2(0,t;Lp(O;H)))

(ii)

6 ‖G‖Lp(Ω;L2(R+;γ(H,X))).

The estimate (i) follows from Minkowski’s inequality with exponent p/2. To see that

(ii) holds, let f ∈ Lp(O;H) and F ∈ γ(H,Lp(O)) be given by (Fh)(r) = [h, f(r)]H .

Let (hj)j>1 be an orthonormal basis for H . Then by randomization and Minkowski’s

inequality with exponent p/2, we have

‖f‖Lp(O;H) =
∥∥∥
(∑

j>1

|[hj , f ]|2
)1/2∥∥∥

Lp(O)

=
∥∥∥
(∑

j>1

|Fhj |2
)1/2∥∥∥

Lp(O)
=

∥∥∥
∑

j>1

γjFhj

∥∥∥
Lp(O;L2(Ω̃))

6

∥∥∥
∑

j>1

γjFhj

∥∥∥
L2(Ω̃;Lp(O))

= ‖F‖γ(H,Lp(O)).

Here (γj)j>1 is a Gaussian sequence on a probability space (Ω̃, Ã , P̃). This proves (ii)

and therefore, Kp,X 6 Kp,R. The converse estimate is trivial.
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(2) This seems to be well-known to experts. A short proof can be given using (1).

Fix G ∈ Lp
F

(Ω;L2(R+; γ(H,X))). Since G is strongly measurable it takes values in

a separable subspace of γ(H,X). Therefore we can replace X by a separable Hilbert

space X0 if necessary. Now the result follows from (1), because any separable Hilbert

space is isometric to a closed subspace of Lp(0, 1) (see [1, Proposition 6.4.13]). �

As a consequence we obtain the following result.

Theorem A.3. Let (O,Σ, µ) be a (nonempty) σ-finite measure space and let

q ∈ [2,∞). Let X be a closed subspace of Lq(O). Then for all p ∈ [q,∞) one has

Kp,X = Kp,R for the optimal constants from (A.1).

P r o o f. Without loss of generality we can assume X = Lq(O). Let θ ∈ (0, 1)

be such that 1/q = 1
2 (1 − θ) + θ/p. Then it follows from Proposition A.1 with

X0 = L2(O) and X1 = Lp(O) and Xθ = Lq(O) that Kp,Lq(O) 6 K1−θ
p,L2(O)K

θ
p,Lp(O).

Combining this with Lemma A.2 yields Kp,Lq(O) 6 Kp,R. The converse inequality is

trivial. �

Corollary A.4. Let (O,Σ, µ) be a (nonempty) σ-finite measure space, let q ∈
[2,∞) and let X be a closed subspace of Lq(O). Then for all p ∈ [q,∞),

(
E sup

t>0

∥∥∥∥
∫ t

0

G(s) dWH(s)

∥∥∥∥
p

X

)1/p

6 Kp,R p
′‖G‖Lp(Ω;L2(R+;γ(H,X))),

where p′ ∈ (1, 2] is such that 1/p+ 1/p′ = 1.

Recall that there is a constant b > 0 such that Kp,R 6 b
√
p for all p ∈ [2,∞).

Therefore, in the above result we have Kp,R p
′ 6 2b

√
p provided p ∈ [q,∞). This

is a rather precise description of the behavior of the constant as p → ∞ and has

important consequences.

P r o o f. This follows directly from Doob’s maximal Lp-inequality for the sub-

martingale ‖
∫
·

0
G(s) dWH(s)‖ combined with (A.3). �
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