233 research outputs found

    Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations

    Full text link
    We study the possibility for detecting gamma-ray emission from galaxy clusters. We consider 1) leptophilic models of dark matter (DM) annihilation that include a Sommerfeld enhancement (SFE), 2) different representative benchmark models of supersymmetric DM, and 3) cosmic ray (CR) induced pion decay. Among all clusters/groups of a flux-limited X-ray sample, we predict Virgo, Fornax and M49 to be the brightest DM sources and find a particularly low CR-induced background for Fornax. For a minimum substructure mass given by the DM free-streaming scale, cluster halos maximize the substructure boost for which we find a factor above 1000. Since regions around the virial radius dominate the annihilation flux of substructures, the resulting surface brightness profiles are almost flat. This makes it very challenging to detect this flux with imaging atmospheric Cherenkov telescopes. Assuming cold dark matter with a substructure mass distribution down to an Earth mass and using extended Fermi upper limits, we rule out the leptophilic models in their present form in 28 clusters, and limit the boost from SFE in M49 and Fornax to be < 5. This corresponds to a limit on SFE in the Milky Way of < 3, which is too small to account for the increasing positron fraction with energy as seen by PAMELA and challenges the DM interpretation. Alternatively, if SFE is realized in Nature, this would imply a limiting substructure mass of M_lim > 10^4 M_sol - a problem for structure formation. Using individual cluster observations, it will be challenging for Fermi to constrain our selection of DM benchmark models without SFE. The Fermi upper limits are, however, closing in on our predictions for the CR flux using an analytic model based on cosmological hydrodynamical cluster simulations. We limit the CR-to-thermal pressure in nearby bright galaxy clusters of the Fermi sample to < 10% and in Norma and Coma to < 3%.Comment: 43 pages, 23 figures, 10 tables. Accepted for publication in Phys. Rev. D: streamlined paper, added a paragraph about detectability to introduction, few references added, and few typos correcte

    A comparison of cosmological codes: properties of thermal gas and shock waves in large-scale structures

    Get PDF
    Cosmological hydrodynamical simulations are a valuable tool for understanding the growth of large-scale structure and the observables connected with this. Yet, comparably little attention has been given to validation studies of the properties of shocks and of the resulting thermal gas between different numerical methods something of immediate importance as gravitational shocks are responsible for generating most of the entropy of the large-scale structure in the Universe. Here, we present results for the statistics of thermal gas and the shock wave properties for a large volume simulated with three different cosmological numerical codes: the Eulerian total variations diminishing (TVD) code, the Eulerian piecewise parabolic method based code enzo and the Lagrangian smoothed particle hydrodynamics (SPH) code gadget. Starting from a shared set of initial conditions, we present convergence tests for a cosmological volume of side-length 100 Mpc h-1, studying in detail the morphological and statistical properties of the thermal gas as a function of mass and spatial resolution in all codes. By applying shock-finding methods to each code, we measure the statistics of shock waves and the related cosmic ray acceleration efficiencies, within the sample of simulations and for the results of the different approaches. We discuss the regimes of uncertainties and disagreement among codes, with a particular focus on the results at the scale of galaxy clusters. Even if the bulk of thermal and shock properties is reasonably in agreement among the three codes, yet some significant differences exist (especially between Eulerian methods and SPH). In particular, we report (a) differences of huge factors (similar to 10100) in the values of average gas density, temperature, entropy, Mach number and shock thermal energy flux in the most rarefied regions of the simulations (?/?cr < 1) between grid and SPH methods; (b) the hint of an entropy core inside clusters simulated in grid codes; (c) significantly different phase diagrams of shocked cells in grid codes compared to SPH and (d) sizable differences in the morphologies of accretion shocks between grid and SPH methodsopen393

    Is dark matter with long-range interactions a solution to all small-scale problems of \Lambda CDM cosmology?

    Full text link
    The cold dark matter (DM) paradigm describes the large-scale structure of the universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of DM models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.Comment: revtex4; 6 pages, 3 figures; minor changes to match published versio

    Detecting the orientation of magnetic fields in galaxy clusters

    Full text link
    Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so magnetic fields strongly shape the cluster's thermal history; that some have not since cooled and collapsed is a mystery. In a seemingly unrelated puzzle, recent observations of Virgo cluster spiral galaxies imply ridges of strong, coherent magnetic fields offset from their centre. Here we demonstrate, using three-dimensional magnetohydrodynamical simulations, that such ridges are easily explained by galaxies sweeping up field lines as they orbit inside the cluster. This magnetic drape is then lit up with cosmic rays from the galaxies' stars, generating coherent polarized emission at the galaxies' leading edges. This immediately presents a technique for probing local orientations and characteristic length scales of cluster magnetic fields. The first application of this technique, mapping the field of the Virgo cluster, gives a startling result: outside a central region, the magnetic field is preferentially oriented radially as predicted by the magnetothermal instability. Our results strongly suggest a mechanism for maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in Nature Physics, high-resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd

    Universal upper limit on inflation energy scale from cosmic magnetic field

    Full text link
    Recently observational lower bounds on the strength of cosmic magnetic fields were reported, based on gamma-ray flux from distant blazars. If inflation is responsible for the generation of such magnetic fields then the inflation energy scale is bounded from above as rho_{inf}^{1/4} < 2.5 times 10^{-7}M_{Pl} times (B_{obs}/10^{-15}G)^{-2} in a wide class of inflationary magnetogenesis models, where B_{obs} is the observed strength of cosmic magnetic fields. The tensor-to-scalar ratio is correspondingly constrained as r< 10^{-19} times (B_{obs}/10^{-15}G)^{-8}. Therefore, if the reported strength B_{obs} \geq 10^{-15}G is confirmed and if any signatures of gravitational waves from inflation are detected in the near future, then our result indicates some tensions between inflationary magnetogenesis and observations.Comment: 12pages, v2: several discussions and references added, version accepted for publication by JCA

    Non-thermal X-rays, a high abundance ridge and fossil bubbles in the core of the Perseus cluster of galaxies

    Full text link
    Using a deep Chandra observation of the Perseus cluster of galaxies, we find a high-abundance shell 250 arcsec (93 kpc) from the central nucleus. This ridge lies at the edge of the Perseus radio mini-halo. In addition we identify two Halpha filaments pointing towards this shell. We hypothesise that this ridge is the edge of a fossil radio bubble, formed by entrained enriched material lifted from the core of the cluster. There is a temperature jump outside the shell, but the pressure is continuous indicating a cold front. A non-thermal component is mapped over the core of the cluster with a morphology similar to the mini-halo. Its total luminosity is 4.8x10^43 erg/s, extending in radius to ~75 kpc. Assuming the non-thermal emission is the result of inverse Compton scattering of the CMB and infrared emission from NGC 1275, we map the magnetic field over the core of the cluster.Comment: 8 pages, colour, accepted by MNRA

    Radio observations of ZwCl 2341.1+0000: a double radio relic cluster

    Full text link
    Context: Hierarchal models of large scale structure (LSS) formation predict that galaxy clusters grow via gravitational infall and mergers of (smaller) mass concentrations, such as clusters and galaxy groups. Diffuse radio emission, in the form of radio halos and relics, is found in clusters undergoing a merger, indicating that shocks or turbulence associated with the merger are capable of accelerating electrons to highly relativistic energies. Here we report on radio observations of ZwCl 2341.1+0000, a complex merging structure of galaxies located at z=0.27, using Giant Metrewave Radio Telescope (GMRT) observations. Aims: The main aim of the observations is to study the nature of the diffuse radio emission in the galaxy cluster ZwCl 2341.1+0000. Methods: We have carried out GMRT 610, 241, and 157 MHz continuum observations of ZwCl 2341.1+0000. The radio observations are combined with X-ray and optical data of the cluster. Results: The GMRT observations show the presence of a double peripheral radio relic in the cluster ZwCl 2341.1+0000. The spectral index is -0.49 \pm 0.18 for the northern relic and -0.76 \pm 0.17 for the southern relic respectively. We have derived values of 0.48-0.93 microGauss for the equipartition magnetic field strength. The relics are probably associated with an outwards traveling merger shock waves.Comment: 14 pages, 10 figures, accepted for publication in A&A on July 30, 200

    A search for steep spectrum radio relics and halos with the GMRT

    Full text link
    Context: Diffuse radio emission, in the form of radio halos and relics, traces regions in clusters with shocks or turbulence, probably produced by cluster mergers. Some models of diffuse radio emission in clusters indicate that virtually all clusters should contain diffuse radio sources with a steep spectrum. External accretion shocks associated with filamentary structures of galaxies could also accelerate electrons to relativistic energies and hence produce diffuse synchrotron emitting regions. Here we report on Giant Metrewave Radio Telescope (GMRT) observations of a sample of steep spectrum sources from the 74 MHz VLSS survey. These sources are diffuse and not associated with nearby galaxies. Aims: The main aim of the observations is to search for diffuse radio emission associated with galaxy clusters or the cosmic web. Methods: We carried out GMRT 610 MHz continuum observations of unidentified diffuse steep spectrum sources. Results: We have constructed a sample of diffuse steep spectrum sources, selected from the 74 MHz VLSS survey. We identified eight diffuse radio sources probably all located in clusters. We found five radio relics, one cluster with a giant radio halo and a radio relic, and one radio mini-halo. By complementing our observations with measurements from the literature we find correlations between the physical size of relics and the spectral index, in the sense that smaller relics have steeper spectra. Furthermore, larger relics are mostly located in the outskirts of clusters while smaller relics are located closer to the cluster center.Comment: 20 pages, 26 figures, accepted for publication in A&A on October 7, 200
    • 

    corecore