42 research outputs found

    Global Anisotropy Versus Small-Scale Fluctuations in Neutrino Flux in Core-Collapse Supernova Explosions

    Full text link
    Effects of small-scale fluctuations in the neutrino radiation on core-collapse supernova explosions are examined. Through a parameter study with a fixed radiation field of neutrinos, we find substantial differences between the results of globally anisotropic neutrino radiation and those with fluctuations. As the number of modes of fluctuations increases, the shock positions, entropy distributions, and explosion energies approach those of spherical explosion. We conclude that global anisotropy of the neutrino radiation is the most effective mechanism of increasing the explosion energy when the total neutrino luminosity is given. This supports the previous statement on the explosion mechanism by Shimizu and coworkers.Comment: 14 pages, including 12 figures. To be published in the Astrophysical Journa

    Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multi-group Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae

    Full text link
    Using the 2D multi-group, flux-limited diffusion version of the code VULCAN/2D, that also incorporates rotation, we have calculated the collapse, bounce, shock formation, and early post-bounce evolutionary phases of a core-collapse supernova for a variety of initial rotation rates. This is the first series of such multi-group calculations undertaken in supernova theory with fully multi-D tools. We find that though rotation generates pole-to-equator angular anisotropies in the neutrino radiation fields, the magnitude of the asymmetries is not as large as previously estimated. Moreover, we find that the radiation field is always more spherically symmetric than the matter distribution, with its plumes and convective eddies. We present the dependence of the angular anisotropy of the neutrino fields on neutrino species, neutrino energy, and initial rotation rate. Only for our most rapidly rotating model do we start to see qualitatively different hydrodynamics, but for the lower rates consistent with the pre-collapse rotational profiles derived in the literature the anisotropies, though interesting, are modest. This does not mean that rotation does not play a key role in supernova dynamics. The decrease in the effective gravity due to the centripetal effect can be quite important. Rather, it means that when a realistic mapping between initial and final rotational profiles and 2D multi-group radiation-hydrodynamics are incorporated into collapse simulations the anisotropy of the radiation fields may be only a secondary, not a pivotal factor, in the supernova mechanism.Comment: Includes 11 low-resolution color figures, accepted to the Astrophysical Journal (June 10, 2005; V. 626); high-resolution figures and movies available from the authors upon reques

    General Relativistic Mean Field Theory for Rotating Nuclei

    Full text link
    We formulate a general relativistic mean field theory for rotating nuclei starting from the special relativistic σω\sigma - \omega model Lagrangian. The tetrad formalism is adopted to generalize the model to the accelerated frame.Comment: 13 pages, REVTeX, no figures, submitted to Phys. Rev. Lett., the word `curved' is replaced by `non-inertial' or `accelerated' in several places to clarify the physical situation interested, some references are added, more detail discussions are given with omitting some redundant sentence

    The T=0 neutron-proton pairing correlations in the superdeformed rotational bands around 60Zn

    Get PDF
    The superdeformed bands in 58Cu, 59Cu, 60Zn, and 61Zn are analyzed within the frameworks of the Skyrme-Hartree-Fock as well as Strutinsky-Woods-Saxon total routhian surface methods with and without the T=1 pairing correlations. It is shown that a consistent description within these standard approaches cannot be achieved. A T=0 neutron-proton pairing configuration mixing of signature-separated bands in 60Zn is suggested as a possible solution to the problem.Comment: 9 ReVTex pages, 10 figures, submitted to Phys. Rev.

    The expansion asymmetry and age of the Cassiopeia A supernova remnant

    Get PDF
    HST images of the young supernova remnant Cas A are used to explore the expansion and spatial distribution of its highest velocity debris. ACS WFC images taken in 2004 March and December with Sloan F625W, F775W, and F850LP filters were used to identify 1825 high-velocity, outlying ejecta knots through measured proper motions of 0."35 - 0."90 yr(-1), corresponding to V-trans = 5500-14,500 km s(-1) assuming d = 3.4 kpc. The distribution of derived transverse expansion velocities for these ejecta knots shows a striking bipolar asymmetry with the highest velocity knots (V-trans >= 10,500 km s(-1)) confined to nearly opposing northeast and southwest "jets'' at P.A. = 45 degrees-70 degrees and 230 degrees-270 degrees, respectively. The jets have about the same maximum expansion velocity of similar or equal to 14,000 km s(-1) and appear kinematically and chemically distinct in that they are the remnant's only S-rich ejecta with expansion velocities above the 10,000-11,000 km s(-1) exhibited by outer nitrogen-rich ejecta, which otherwise represent the remnant's highest velocity debris. In addition, we find significant gaps in the spatial distribution of outlying ejecta in directions that are approximately perpendicular to the jets (P.A. = 145 degrees-200 degrees and 335 degrees-350 degrees). The remnant's central X-ray point source lies some 700 to the southeast of the estimated expansion center ( P.A. = 169 degrees +/- 8.degrees 4) indicating a projected motion toward the middle of the broad southern ejecta knot gap. Extrapolations of measured 9 month proper motions for all 1825 outer ejecta knots and a selected subsample of 72 bright and compact knots suggest explosion dates (assuming no knot deceleration) of 1662 +/- 27 and 1672 +/- 18, respectively. We find some evidence for nonuniform deceleration in different directions around the remnant and find 126 knots located along the northwestern limb among the least decelerated ejecta, suggesting a convergence date of 1681 +/- 19. A remnant age of around 325 yr would imply a +/- 350 km s(-1) transverse velocity for the central X-ray point source

    Relativistic Continuum Hartree Bogoliubov Theory for Ground State Properties of Exotic Nuclei

    Full text link
    The Relativistic Continuum Hartree-Bogoliubov (RCHB) theory, which properly takes into account the pairing correlation and the coupling to (discretized) continuum via Bogoliubov transformation in a microscopic and self-consistent way, has been reviewed together with its new interpretation of the halo phenomena observed in light nuclei as the scattering of particle pairs into the continuum, the prediction of the exotic phenomena -- giant halos in nuclei near neutron drip line, the reproduction of interaction cross sections and charge-changing cross sections in light exotic nuclei in combination with the Glauber theory, better restoration of pseudospin symmetry in exotic nuclei, predictions of exotic phenomena in hyper nuclei, and new magic numbers in superheavy nuclei, etc. Recent investigations on new effective interactions, the density dependence of the interaction strengthes, the RMF theory on the Woods-Saxon basis, the single particle resonant states, and the resonant BCS (rBCS) method for the pairing correlation, etc. are also presented in some details.Comment: 79 pages. Prog. Part. Nucl. Phys. (2005) in pres
    corecore