35 research outputs found

    Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution

    Get PDF
    This article reviews the current legislative requirements for risk assessment of combined exposure to multiple chemicals via multiple exposure routes, focusing on human health and particularly on food-related chemicals. The aim is to identify regulatory needs and current approaches for this type of risk assessment as well as challenges of the implementation of appropriate and harmonized guidance at international level. It provides an overview of the current legal requirements in the European Union (EU), the United States and Canada. Substantial differences were identified in the legal requirements for risk assessment of combined exposure to multiple chemicals and its implementation between EU and non-EU countries and across several regulatory sectors. Frameworks currently proposed and in use for assessing risks from combined exposure to multiple chemicals via multiple routes and different durations of exposure are summarized. In order to avoid significant discrepancies between regulatory sectors or countries, the approach for assessing risks of combined exposure should be based on similar principles for all types of chemicals. OECD and EFSA identified the development of harmonized methodologies for combined exposure to multiple chemicals as a key priority area. The Horizon 2020 project “EuroMix” aims to contribute to the further development of internationally harmonized approaches for such risk assessments by the development of an integrated test strategy using in vitro and in silico tests verified for chemical mixtures based on more appropriate data on potential combined effects. These approaches and testing strategies should be integrated in a scientifically based weight of evidence approach to account for complexity and uncertainty, to improve risk assessment

    Scientific Committee guidance on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments

    Get PDF
    EFSA requested its Scientific Committee to prepare a guidance document on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments. The guidance document provides an introduction to epidemiological studies and illustrates the typical biases, which may be present in different epidemiological study designs. It then describes key epidemiological concepts relevant for evidence appraisal. This includes brief explanations for measures of association, exposure assessment, statistical inference, systematic error and effect modification. The guidance then describes the concept of external validity and the principles of appraising epidemiological studies. The customisation of the study appraisal process is explained including tailoring of tools for assessing the risk of bias (RoB). Several examples of appraising experimental and observational studies using a RoB tool are annexed to the document to illustrate the application of the approach. The latter part of this guidance focuses on different steps of evidence integration, first within and then across different streams of evidence. With respect to risk characterisation, the guidance considers how evidence from human epidemiological studies can be used in dose–response modelling with several different options being presented. Finally, the guidance addresses the application of uncertainty factors in risk characterisation when using evidence from human epidemiological studies

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program

    Scientific Opinion about the Guidance of the Chemical Regulation Directorate (UK) on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessments

    Get PDF
    Abstract The EFSA Panel on Plant Protection Products and their Residues reviewed the guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessment. The inclusion of aged sorption is a higher tier in the groundwater leaching assessment. The Panel based its review on a test with three substances taken from a data set provided by the European Crop Protection Association. Particular points of attention were the quality of the data provided, the proposed fitting procedure of aged sorption experiments and the proposed method for combining results obtained from aged sorption studies and lower‐tier studies on degradation and adsorption. Aged sorption was a relevant process in all cases studied. The test revealed that the guidance could generally be well applied and resulted in robust and plausible results. The Panel considers the guidance suitable for use in the groundwater leaching assessment after the recommendations in this Scientific Opinion have been implemented, with the exception of the use of field data to derive aged sorption parameters. The Panel noted that the draft guidance could only be used by experienced users because there is no software tool that fully supports the work flow in the guidance document. It is therefore recommended that a user‐friendly software tool be developed. Aged sorption lowered the predicted concentration in groundwater. However, because aged sorption experiments may be conducted in different soils than lower‐tier degradation and adsorption experiments, it cannot be guaranteed that the higher tier predicts lower concentrations than the lower tier, while lower tiers should be more conservative than higher tiers. To mitigate this problem, the Panel recommends using all available higher‐ and lower‐tier data in the leaching assessment. The Panel further recommends that aged sorption parameters for metabolites be derived only from metabolite‐dosed studies. The formation fraction can be derived from parent‐dosed degradation studies, provided that the parent and metabolite are fitted with the best‐fit model, which is the double first‐order in parallel model in the case of aged sorption

    Determination of dimethoate and omethoate in human serum samples. Risk assessment for the operator

    No full text
    A simple and effective analytical procedure has been developed for the determination of dimethoate (DIM) residues and its metabolite, omethoate, in serum samples of pesticide operators. For the selection of the most appropriate method for sample treatment, techniques such as headspace solid phase micro extraction and solid phase extraction and liquid-liquid extraction were applied. The applied method was based on toluene (2 mL) extraction of a 0.5mL serum sample. In this report, it was observed that DIM concentration level affected the ratio of the area response of DIM and one of its oxygenated metabolite, omethoate. In this context, higher concentrations favoured the predominance of DIM while lower concentrations lead to the formation of omethoate. The method was validated using human serum samples spiked with DIM. Good linearity was obtained in the range of 1-10 ng/mL co-calculating DIM and omethoate. Various concentrations of DIM were mixed with serum and stored up to five days at -20°C. Recoveries ranged from 72% to 88% at two spiking levels for six replicates. The detection and quantification limit were calculated at 0.12 and 0.36 ng/mL of serum, respectively. Finally the comparison with the Acceptable Operator Exposure Level (AOEL) of DIM revealed that the maximum exposure of the operators reached the 30% of the AOEL for only two cases. © 2011 Taylor & Francis

    Headspace solid phase micro extraction gas chromatographic determination of fenthion in human serum

    No full text
    A simple and effective analytical procedure was developed for the determination of fenthion residues in human serum samples. The sample treatment was performed using the headspace solid-phase micro extraction with polyacrylate fiber, which has the advantage to require low amount of serum (1 mL) without tedious pre-treatment. The quantification of fenthion was carried out by gas chromatography-mass spectrometry and the recoveries ranged from 79 to 104% at two spiking levels for 6 replicates. Detection and quantification limits were calculated as 1.51 and 4.54 ng/mL of serum respectively. Two fenthion metabolites - fenoxon and fenthion-sulfoxide - were also identified. © 2008 by the authors

    Deliverable 2.1 - Report describing cumulative assessment groups for a broad range of chemicals, based on information extracted from (literature) databases

    No full text
    This report describes chemical substances relevant for the EuroMix Project; that is pesticide and non‐pesticide chemicals which can be grouped into cumulative assessment groups (CAGs) for consideration in cumulative risk assessment (CRA). The European Food Safety Authority (EFSA) has previously published an Opinion describing the approach to be followed for grouping pesticides into CAGs based on their toxicological profile. The present report takes into consideration the EFSA Opinion for pesticides and introduces a similar strategy to be considered for grouping of non‐pesticide chemicals into CAGs. For this purpose, a broad list of chemical substances was compiled into a Chemical Inventory (CI). So far, the CI contains approximately 1000 substances of different chemical categories

    Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution.

    No full text
    This article reviews the current legislative requirements for risk assessment of combined exposure to multiple chemicals via multiple exposure routes, focusing on human health and particularly on food-related chemicals. The aim is to identify regulatory needs and current approaches for this type of risk assessment as well as challenges of the implementation of appropriate and harmonized guidance at international level. It provides an overview of the current legal requirements in the European Union (EU), the United States and Canada. Substantial differences were identified in the legal requirements for risk assessment of combined exposure to multiple chemicals and its implementation between EU and non-EU countries and across several regulatory sectors. Frameworks currently proposed and in use for assessing risks from combined exposure to multiple chemicals via multiple routes and different durations of exposure are summarized. In order to avoid significant discrepancies between regulatory sectors or countries, the approach for assessing risks of combined exposure should be based on similar principles for all types of chemicals. OECD and EFSA identified the development of harmonized methodologies for combined exposure to multiple chemicals as a key priority area. The Horizon 2020 project "EuroMix" aims to contribute to the further development of internationally harmonized approaches for such risk assessments by the development of an integrated test strategy using in vitro and in silico tests verified for chemical mixtures based on more appropriate data on potential combined effects. These approaches and testing strategies should be integrated in a scientifically based weight of evidence approach to account for complexity and uncertainty, to improve risk assessment
    corecore