208 research outputs found

    Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents

    Get PDF
    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger, leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography/negative ion electrospray ionisation time-of-flight mass spectrometry analysis and were compared to the gas-phase compounds detected by online proton-transfer-reaction mass spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and additional mass spectrometry (MS<sup>2</sup> and MS<sup>3</sup> fragmentation studies). Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. <i>m</i> / <i>z</i> 201, C<sub>9</sub>H<sub>14</sub>O<sub>5</sub> and <i>m</i> / <i>z</i> 215, C<sub>10</sub>H<sub>16</sub>O<sub>5</sub>), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The <i>m</i> / <i>z</i> 201 and 215 compounds were tentatively identified as a C<sub>9</sub>- and C<sub>10</sub>-carbonyl-dicarboxylic acid, respectively, based on reaction mechanisms of campholenic aldehyde and ozone, as well as detailed interpretation of mass spectral data, in conjunction with the formation of corresponding DNPH derivatives

    Beurteilung der Anbauwürdigkeit unterschiedlicher Herkünfte von Saflor (Carthamus tinctorius) und Leindotter (Camelina sativa) zur Speiseölgewinnung unter den Bedingungen des Ökologischen Landbaus in Mitteleuropa

    Get PDF
    Der Anbau von Ölpflanzen im Ökologischen Landbau Mitteleuropas beschränkt sich auf Raps und Sonnenblumen und erfolgt derzeit auf einem geringen Anteil der biologisch bewirtschafteten Fläche. Als alternative Ölpflanzenarten lassen Saflor und Leindotter für den Einsatz im Ökologischen Landbau eine besondere Eignung erwarten. 2002 wurden in einer zweiortigen Prüfung auf Mikroparzellen unter insgesamt nahezu 1000 Genotypen (Genbank-Akzessionen, Sorten, Zuchtstämme) beider Arten hierzu geeignete Formen gesucht. Neben der Resistenz gegen verschiedene Krankheiten wurden weitere agronomisch relevante Merkmale, ein daraus errechneter Index sowie das Parzellengewicht erhoben. Bei beiden Arten wurden für viele Merkmale eine große Variabilität sowie hohe Heritabilitäten gefunden. Insbesondere für Saflor war dies der Fall, wo die am besten adaptierten Herkünfte des geprüften Weltsortimentes - von wenigen Ausnahmen abgesehen - aus Europa stammten. Auch bei Leindotter konnten überlegene Formen identifiziert werden, die sich jedoch mehrheitlich unter dem Material außerhalb der GUS-Staaten befanden

    Selektion anbauwürdiger Saflor-Formen für den Ökologischen Landbau aus einem zweijährigen Screening-Experiment

    Get PDF
    Als alternative Ölpflanze mit hervorragender Speiseölqualität könnte Saflor für den ökologischen Landbau dort in Frage kommen, wo Raps und Sonnenblumen weniger hohe Erträge zu liefern imstande sind. In der vorliegenden Studie sollte die Anbauwürdigkeit des Saflors unter den Bedingungen des Ökologischen Landbaues mit einem Screening von 741 ausgewählten Formen dieser Art überprüft werden. Das Experiment fand 2002 an zwei Standorten statt. Eine hieraus getroffene Auswahl von 65 geeigneten Herkünften wurde 2003 in einer dreiortigen Leistungsprüfung weiter getestet. 2002 wurden sowohl bei morphologischen als auch agronomisch wichtigen Merkmalen große Unterschiede zwischen den Herkünften gefunden. Besonders in der Anfälligkeit für verschiedene Krankheiten zeigte das Material eine große Variabilität. Neben ertragslosen Formen konnten eine Reihe von Genotypen mit ausreichendem Kornansatz geerntet werden, die zusätzlich im Mittel einen Kernanteil bis zu 40% aufwiesen. Das weitergeprüfte Material zeigte 2003 eine mit den Daten aus 2002 gut übereinstimmende Krankheitsanfälligkeit. Es kann hieraus gefolgert werden, dass es bei Saflor anbauwürdige Formen gibt, die auch unter unseren eher humiden Klimabedingungen noch ausreichende Leistungen erbringen können

    Cortical topography of intracortical inhibition influences the speed of decision making

    Get PDF
    The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes

    Channel diffusion of sodium in a silicate glass

    Full text link
    We use classical molecular dynamics simulations to study the dynamics of sodium atoms in amorphous Na2_2O-4SiO2_2. We find that the sodium trajectories form a well connected network of pockets and channels. Inside these channels the motion of the atoms is not cooperative but rather given by independent thermally activated hops of individual atoms between the pockets. By determining the probability that an atom returns to a given starting site, we show that such events are not important for the dynamics of this system.Comment: 10 pages of Latex, 5 figures, one figure added, text expande

    The N2pc Is Increased by Perceptual Learning but Is Unnecessary for the Transfer of Learning

    Get PDF
    Background: Practice improves human performance in many psychophysical paradigms. This kind of improvement is thought to be the evidence of human brain plasticity. However, the changes that occur in the brain are not fully understood. Methodology/Principal Findings: The N2pc component has previously been associated with visuo-spatial attention. In this study, we used event-related potentials (ERPs) to investigate whether the N2pc component changed during long-term visual perceptual learning. Thirteen subjects completed several days of training in an orientation discrimination task, and were given a final test 30 days later. The results showed that behavioral thresholds significantly decreased across training sessions, and this decrement was also present in the untrained visual field. ERPs showed training significantly increased the N2pc amplitude, and this effect could be maintained for up to 30 days. However, the increase in N2pc was specific to the trained visual field. Conclusion/Significance: Training caused spatial attention to be increasingly focused on the target positions. However, this process was not transferrable from the trained to the untrained visual field, which suggests that the increase in N2pc ma

    Emergence and Modular Evolution of a Novel Motility Machinery in Bacteria

    Get PDF
    Bacteria glide across solid surfaces by mechanisms that have remained largely mysterious despite decades of research. In the deltaproteobacterium Myxococcus xanthus, this locomotion allows the formation stress-resistant fruiting bodies where sporulation takes place. However, despite the large number of genes identified as important for gliding, no specific machinery has been identified so far, hampering in-depth investigations. Based on the premise that components of the gliding machinery must have co-evolved and encode both envelope-spanning proteins and a molecular motor, we re-annotated known gliding motility genes and examined their taxonomic distribution, genomic localization, and phylogeny. We successfully delineated three functionally related genetic clusters, which we proved experimentally carry genes encoding the basal gliding machinery in M. xanthus, using genetic and localization techniques. For the first time, this study identifies structural gliding motility genes in the Myxobacteria and opens new perspectives to study the motility mechanism. Furthermore, phylogenomics provide insight into how this machinery emerged from an ancestral conserved core of genes of unknown function that evolved to gliding by the recruitment of functional modules in Myxococcales. Surprisingly, this motility machinery appears to be highly related to a sporulation system, underscoring unsuspected common mechanisms in these apparently distinct morphogenic phenomena

    Led into Temptation? Rewarding Brand Logos Bias the Neural Encoding of Incidental Economic Decisions

    Get PDF
    Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness

    Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans

    Get PDF
    Reward learning depends on accurate reward associations with potential choices. These associations can be attained with reinforcement learning mechanisms using a reward prediction error (RPE) signal (the difference between actual and expected rewards) for updating future reward expectations. Despite an extensive body of literature on the influence of RPE on learning, little has been done to investigate the potentially separate contributions of RPE valence (positive or negative) and surprise (absolute degree of deviation from expectations). Here, we coupled single-trial electroencephalography with simultaneously acquired fMRI, during a probabilistic reversal-learning task, to offer evidence of temporally overlapping but largely distinct spatial representations of RPE valence and surprise. Electrophysiological variability in RPE valence correlated with activity in regions of the human reward network promoting approach or avoidance learning. Electrophysiological variability in RPE surprise correlated primarily with activity in regions of the human attentional network controlling the speed of learning. Crucially, despite the largely separate spatial extend of these representations our EEG-informed fMRI approach uniquely revealed a linear superposition of the two RPE components in a smaller network encompassing visuo mnemonic and reward areas. Activity in this network was further predictive of stimulus value updating indicating a comparable contribution of both signals to reward learning
    • …
    corecore