318 research outputs found

    Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory

    Full text link
    On the basis of a new ab initio, all-electron response scheme, formulated within time-dependent density-functional theory, we solve the puzzle posed by the anomalous dispersion of the plasmon linewidth in K. The key damping mechanism is shown to be decay into particle-hole pairs involving empty states of d-symmetry. While the effect of many-particle correlations is small, the correlations built into the "final-state" -d-bands play an important, and novel, role ---which is related to the phase-space complexity associated with these flat bands. Our case study of plasmon lifetime in K illustrates the importance of ab initio paradigms for the study of excitations in correlated-electron systems.Comment: 12 pages, 4 figures, for html browsing see http://web.utk.edu/~weik

    Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale

    Full text link
    Experiments determining the lifetime of excited electrons in crystalline copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\it et al.}, Phys. Rev. B {\bf 55}, 10869 (1997)]. In this article we propose a model which explains these states as transient excitonic states in metals. The physical background of transient excitons is the finite time a system needs to react to an external perturbation, in other words, the time which is needed to build up a polarization cloud. This process can be probed with modern ultra-short laser pulses. We calculate the time-dependent density-response function within the jellium model and for real Cu. From this knowledge it is possible within linear response theory to calculate the time needed to screen a positive charge distribution and -- on top of this -- to determine excitonic binding energies. Our results lead to the interpretation of the experimentally detected states as transient excitonic states.Comment: 24 pages, 9 figures, to appear in Phys. Rev. B, Nov. 15, 2000, issue 2

    Dynamics of Excited Electrons in Copper: Role of Auger Electrons

    Full text link
    Within a theoretical model based on the Boltzmann equation, we analyze in detail the structure of the unusual peak recently observed in the relaxation time in Cu. In particular, we discuss the role of Auger electrons in the electron dynamics and its dependence on the d-hole lifetime, the optical transition matrix elements and the laser pulse duration. We find that the Auger contribution to the distribution is very sensitive to both the d-hole lifetime tau_h and the laser pulse duration tau_l and can be expressed as a monotonic function of tau_l/tau_h. We have found that for a given tau_h, the Auger contribution is significantly smaller for a short pulse duration than for a longer one. We show that the relaxation time at the peak depends linearly on the d-hole lifetime, but interestingly not on the amount of Auger electrons generated. We provide a simple expression for the relaxation time of excited electrons which shows that its shape can be understood by a phase space argument and its amplitude is governed by the d-hole lifetime. We also find that the height of the peak depends on both the ratio of the optical transition matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured for polycrystalline Cu.Comment: 6 pages, 6 figure

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    The role of occupied d states in the relaxation of hot electrons in Au

    Get PDF
    We present first-principles calculations of electron-electron scattering rates of low-energy electrons in Au. Our full band-structure calculations indicate that a major contribution from occupied d states participating in the screening of electron-electron interactions yields lifetimes of electrons in Au with energies of 1.03.0eV1.0-3.0 {\rm eV} above the Fermi level that are larger than those of electrons in a free-electron gas by a factor of 4.5\sim 4.5. This prediction is in agreement with a recent experimental study of ultrafast electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58}, 10948 (1998)), where electron transport has been shown to play a minor role in the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.

    Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment

    Get PDF
    Both theoretical and experimental results for the dynamics of photoexcited electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and Ni are presented. A model for the dynamics of excited electrons is developed, which is based on the Boltzmann equation and includes effects of photoexcitation, electron-electron scattering, secondary electrons (cascade and Auger electrons), and transport of excited carriers out of the detection region. From this we determine the time-resolved two-photon photoemission (TR-2PPE). Thus a direct comparison of calculated relaxation times with experimental results by means of TR-2PPE becomes possible. The comparison indicates that the magnitudes of the spin-averaged relaxation time \tau and of the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation times for the different ferromagnetic transition metals result not only from density-of-states effects, but also from different Coulomb matrix elements M. Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated reference

    Ionic and electronic structure of sodium clusters up to N=59

    Get PDF
    We determined the ionic and electronic structure of sodium clusters with even electron numbers and 2 to 59 atoms in axially averaged and three-dimensional density functional calculations. A local, phenomenological pseudopotential that reproduces important bulk and atomic properties and facilitates structure calculations has been developed. Photoabsorption spectra have been calculated for Na2\mathrm{Na}_2, Na8\mathrm{Na}_8, and Na9+\mathrm{Na}_9^+ to Na59+\mathrm{Na}_{59}^+. The consistent inclusion of ionic structure considerably improves agreement with experiment. An icosahedral growth pattern is observed for Na19+\mathrm{Na}_{19}^+ to Na59+\mathrm{Na}_{59}^+. This finding is supported by photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality can be requested from the author

    Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010

    Get PDF
    This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow dur- ing the Lagrangian-type “Hill Cap Cloud Thuringia 2010” experiment (HCCT-2010), which was performed in Septem- ber and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow condi- tions (i.e. representative air masses at the different measure- ment sites). The primary goal of the present study was to identify time periods during the 6-week duration of the ex- periment in which these conditions were fulfilled and there- fore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) lo- cal flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert trac- ers, SF6 tracer experiments in the experiment area, and re- gional modelling. This study represents the first applica- tion of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross- correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type ex- periment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as refer- ence cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the mea- sured chemical and physical data during HCCT-2010 (see http://www.atmos-chem-phys.net/special_issue287.html). Results obtained from the statistical flow analyses and regional-scale modelling performed in this study indicate the existence of a strong link between the three measurement sites during the FCEs and NCEs, particularly under condi- tions of constant southwesterly flow, high wind speeds and slightly stable stratification. COD analyses performed using continuous measurements of ozone and particle (49nm di- ameter size bin) concentrations at the three sites revealed, particularly for COD value

    Response theory for time-resolved second-harmonic generation and two-photon photoemission

    Full text link
    A unified response theory for the time-resolved nonlinear light generation and two-photon photoemission (2PPE) from metal surfaces is presented. The theory allows to describe the dependence of the nonlinear optical response and the photoelectron yield, respectively, on the time dependence of the exciting light field. Quantum-mechanical interference effects affect the results significantly. Contributions to 2PPE due to the optical nonlinearity of the surface region are derived and shown to be relevant close to a plasmon resonance. The interplay between pulse shape, relaxation times of excited electrons, and band structure is analyzed directly in the time domain. While our theory works for arbitrary pulse shapes, we mainly focus on the case of two pulses of the same mean frequency. Difficulties in extracting relaxation rates from pump-probe experiments are discussed, for example due to the effect of detuning of intermediate states on the interference. The theory also allows to determine the range of validity of the optical Bloch equations and of semiclassical rate equations, respectively. Finally, we discuss how collective plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe
    corecore