Experiments determining the lifetime of excited electrons in crystalline
copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\it
et al.}, Phys. Rev. B {\bf 55}, 10869 (1997)]. In this article we propose a
model which explains these states as transient excitonic states in metals. The
physical background of transient excitons is the finite time a system needs to
react to an external perturbation, in other words, the time which is needed to
build up a polarization cloud. This process can be probed with modern
ultra-short laser pulses. We calculate the time-dependent density-response
function within the jellium model and for real Cu. From this knowledge it is
possible within linear response theory to calculate the time needed to screen a
positive charge distribution and -- on top of this -- to determine excitonic
binding energies. Our results lead to the interpretation of the experimentally
detected states as transient excitonic states.Comment: 24 pages, 9 figures, to appear in Phys. Rev. B, Nov. 15, 2000, issue
2