91 research outputs found
Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods
Climate change related modifications in the spatio-temporal distribution of precipitation and evapotranspiration will have an impact on groundwater resources. This study presents a modelling approach exploiting the advantages of integrated hydrological modelling and a broad climate model basis. We applied the integrated MIKE SHE model on a perialpine, small catchment in northern Switzerland near Zurich. To examine the impact of climate change we forced the hydrological model with data from eight GCM-RCM combinations showing systematic biases which are corrected by three different statistical downscaling methods, not only for precipitation but also for the variables that govern potential evapotranspiration. The downscaling methods are evaluated in a split sample test and the sensitivity of the downscaling procedure on the hydrological fluxes is analyzed. The RCMs resulted in very different projections of potential evapotranspiration and, especially, precipitation. All three downscaling methods reduced the differences between the predictions of the RCMs and all corrected predictions showed no future groundwater stress which can be related to an expected increase in precipitation during winter. It turned out that especially the timing of the precipitation and thus recharge is very important for the future development of the groundwater levels. However, the simulation experiments revealed the weaknesses of the downscaling methods which directly influence the predicted hydrological fluxes, and thus also the predicted groundwater levels. The downscaling process is identified as an important source of uncertainty in hydrological impact studies, which has to be accounted for. Therefore it is strongly recommended to test different downscaling methods by using verification data before applying them to climate model data
How can remote sensing contribute in groundwater modeling?
Groundwater resources assessment, modeling and management are hampered considerably by a lack of data, especially in semi-arid and arid environments with a weak observation infrastructure. Usually, only a limited number of point measurements are available, while groundwater models need spatial and temporal distributions of input and calibration data. If such data are not available, models cannot play their proper role in decision support as they are notoriously underdetermined and uncertain. Recent developments in remote sensing have opened new sources for distributed spatial data. As the relevant entities such as water fluxes, heads or transmissivities cannot be observed directly by remote sensing, ways have to be found to link the observable quantities to input data required by the model. An overview of the possibilities for employing remote-sensing observations in groundwater modeling is given, supported by examples in Botswana and China. The main possibilities are: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing. In both, models can be improved conceptually and quantitativel
Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?
River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland), where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L) are perfectly known. Hydraulic head data (100 in the default scenario) are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF). For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones) gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high-resolution characterization of L fields with EnKF is still feasible. For less heterogeneous river bed hydraulic conductivities, a high-resolution characterization of L is less important. When uncertainties in the hydraulic parameters of the aquifer are also regarded in the assimilation, the errors in state and flux predictions increase, but the ensemble with a high spatial resolution for L still outperforms the ensembles with effective L values. We conclude that for strongly heterogeneous river beds the commonly applied simplified representation of the streambed, with spatially homogeneous parameters or constant parameters for a few zones, might yield significant biases in the characterization of the water balance. For strongly heterogeneous river beds, we suggest adopting a stochastic field approach to model the spatially heterogeneous river beds geostatistically. The paper illustrates that EnKF is able to calibrate such heterogeneous streambeds on the basis of hydraulic head measurements, outperforming zonation approaches
An empirical vegetation correction for soil water content quantification using cosmic ray probes
Cosmic ray probes are an emerging technology to continuously monitor soil water content at a scale significant to land surface processes. However, the application of this method is hampered by its susceptibility to the presence of aboveground biomass. Here we present a simple empirical framework to account for moderation of fast neutrons by aboveground biomass in the calibration. The method extends the N0-calibration function and was developed using an extensive data set from a network of 10 cosmic ray probes located in the Rur catchment, Germany. The results suggest a 0.9% reduction in fast neutron intensity per 1 kg of dry aboveground biomass per m2 or per 2 kg of biomass water equivalent per m2. We successfully tested the novel vegetation correction using temporary cosmic ray probe measurements along a strong gradient in biomass due to deforestation, and using the COSMIC, and the hmf method as independent soil water content retrieval algorithms. The extended N0-calibration function was able to explain 95% of the overall variability in fast neutron intensity
Assessing large-scale weekly cycles in meteorological variables: a review
Several studies have claimed to have found significant weekly cycles of meteorological variables appearing over large domains, which can hardly be related to urban effects exclusively. Nevertheless, there is still an ongoing scientific debate whether these large-scale weekly cycles exist or not, and some other studies fail to reproduce them with statistical significance. In addition to the lack of the positive proof for the existence of these cycles, their possible physical explanations have been controversially discussed during the last years. In this work we review the main results about this topic published during the recent two decades, including a summary of the existence or non-existence of significant weekly weather cycles across different regions of the world, mainly over the US, Europe and Asia. In addition, some shortcomings of common statistical methods for analyzing weekly cycles are listed. Finally, a brief summary of supposed causes of the weekly cycles, focusing on the aerosol-cloud-radiation interactions and their impact on meteorological variables as a result of the weekly cycles of anthropogenic activities, and possible directions for future research, is presented
Recommended from our members
Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale
An ensemble data assimilation system for 3D radar reflectivity data is introduced for the convection-permitting numerical weather prediction model of the COnsortium for Small-scale MOdelling (COSMO) based on the Kilometre-scale ENsemble Data Assimilation system (KENDA), developed by Deutscher Wetterdienst and its partners. KENDA provides a state-of-the-art ensemble data assimilation system on the convective scale for operational data assimilation and forecasting based on the Local Ensemble Transform Kalman Filter (LETKF). In this study, the Efficient Modular VOlume RADar Operator is applied for the assimilation of radar reflectivity data to improve short-term predictions of precipitation. Both deterministic and ensemble forecasts have been carried out. A case-study shows that the assimilation of 3D radar reflectivity data clearly improves precipitation location in the analysis and significantly improves forecasts for lead times up to 4 h, as quantified by the Brier Score and the Continuous Ranked Probability Score. The influence of different update rates on the noise in terms of surface pressure tendencies and on the forecast quality in general is investigated. The results suggest that, while high update rates produce better analyses, forecasts with lead times of above 1 h benefit from less frequent updates. For a period of seven consecutive days, assimilation of radar reflectivity based on the LETKF is compared to that of DWD's current operational radar assimilation scheme based on latent heat nudging (LHN). It is found that the LETKF competes with LHN, although it is still in an experimental phase
Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter
The ensemble Kalman filter (EnKF) is now widely used in diverse disciplines to estimate model parameters and update model states by integrating observed data. The EnKF is known to perform optimally only for multi-Gaussian distributed states and parameters. A new approach, the normal-score EnKF (NS-EnKF), has been recently proposed to handle complex aquifers with non-Gaussian distributed parameters. In this work, we aim at investigating the capacity of the NS-EnKF to identify patterns in the spatial distribution of the model parameters (hydraulic conductivities) by assimilating dynamic observations in the absence of direct measurements of the parameters themselves. In some situations, hydraulic conductivity measurements (hard data) may not be available, which requires the estimation of conductivities from indirect observations, such as piezometric heads. We show how the NS-EnKF is capable of retrieving the bimodal nature of a synthetic aquifer solely from piezometric head data. By comparison with a more standard implementation of the EnKF, the NS-EnKF gives better results with regard to histogram preservation, uncertainty assessment, and transport predictions. © 2011 International Association for Mathematical Geosciences.The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. The first author appreciates the financial aid from China Scholarship Council (CSC No. [2007]3020).Zhou, H.; Li, L.; Hendricks Franssen, H.; Gómez-Hernández, JJ. (2012). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences. 44(2):169-185. https://doi.org/10.1007/s11004-011-9372-3S169185442Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188Bertino L, Evensen G, Wackernagel H (2003) Sequential data assimilation techniques in oceanography. Int Stat Rev 71(2):223–241Burgers G, Jan van Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6):1719–1724Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, Berlin, 279 ppFernà ndez-Garcia D, Illangasekare T, Rajaram H (2005) Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resour Res 41(3):W03012Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multi-Gaussian fields. In: Soares A (ed) Geostatistics Tróia ’92, vol 1. Kluwer Academic, Dordrecht, pp 85–94Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61Gu Y, Oliver DS (2006) The ensemble Kalman filter for continuous updating of reservoir simulation models. J Energy Resour Technol 128:79–87Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. Tech rep. Open-File Report 00-92, U.S. Department of the Interior, U.S. Geological Survey. Reston, Virginia, 121 ppHendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater flow modeling with the Ensemble Kalman Filter: joint estimation for states and parameters and the filter inbreeding problem. Water Resour Res 44:W09408Hendricks Franssen HJ, Kinzelbach W (2009) Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. J Hydrol 365(3–4):261–274Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137Journel AG, Deutsch CV (1993) Entropy and spatial disorder. Math Geol 25(3):329–355Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macrodispersion experiment (MADE) site, Columbus air force base, Mississippi (USA). J Hydrol 404(3–4):278–293Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34(4):478–489Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147Naevdal G, Johnsen L, Aanonsen S, Vefring E (Mar. 2005) Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J 10(1):66–74Pardo-Igúzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29:775–785Schöniger A, Nowak W, Hendricks Franssen HJ (2011) Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography. Water Resour Res (submitted)Simon E, Bertino L (2009) Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Sci 5:495–510Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London. 181 ppStrébelle S 2000. Sequential simulation drawing structures from training images. PhD thesis, Stanford University. 187 ppStrebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21Wen X, Chen W (2006) Real-time reservoir model updating using ensemble Kalman filter: the confirming approach. SPE J 11(4):431–442Wen X, Chen W (2007) Some practical issues on real time reservoir updating using ensemble Kalman filter. SPE J 12(2):156–166Zhou H, Gómez-Hernández JJ, Hendricks Franssen H-J, Li L (2011) An approach to handling non-gaussianity of parameters and state variables in ensemble Kalman filtering. Adv Water Resour 34(7):844–864Zinn B, Harvey C (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3):105
- …