6,984 research outputs found

    Capillary acquisition devices for high-performance vehicles: Executive summary

    Get PDF
    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined

    Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    Full text link
    Anomalously dispersive cavities, particularly white light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, their use has been proposed for use in LIGO-like gravity wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed ℏω/2\hbar \omega/2. For white light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.Comment: 9 pages, 4 figure

    The geothermal world videogame: An authentic, immersive videogame used to teach observation skills needed for exploration

    Get PDF
    Interviews with geothermal professionals have identified geothermal concepts (i.e. knowledge) and skill sets that entry-level geologists commonly lack when beginning a career in the geothermal energy sector. To help address these issues, an authentic and immersive 3D free-roaming videogame called ‘The GeoThermal World’ was designed and piloted in 2012 at the University of Canterbury to teach undergraduate students about geothermal fieldwork and resource exploration. An experiment was carried out to compare students’ learning experiences in a real fieldwork activity at Orakei Korako to learning experiences in the virtual setting of the videogame. Both settings were designed with the same outcomes in mind: to provide the students with a level of background knowledge and operating procedures to do basic geothermal fieldwork. Several datasets were collected to characterize the students learning and to allow us to compare their overall experiences and perceptions of the tasks in different settings. In both activities, we aimed to teach the students how to observe, characterize and record geologic information at a hot spring. Preliminary results indicate that both settings are successful at teaching geothermal concepts with some strengths and weaknesses identified in both. However, the settings seem to be complementary to one another. Hence, ideally, field teaching experiences as a part of the undergraduate geology curriculum could be supplemented by digital or virtual experiences. This may cut down on the time required to ‘skill-up’ new entry-level geologists who may be lacking geothermal-specific field knowledge and skills. Further development of ‘The GeoThermal World’ will allow us to refine the authenticity and create more complex virtual geothermal settings and challenges

    Design of a low-noise aeroacoustic wind tunnel facility at Brunel University

    Get PDF
    This paper represents the design principle of a quiet, low turbulence and moderately high speed aeroacoustic wind tunnel which was recently commissioned at Brunel University. A new hemi-anechoic chamber was purposely built to facilitate aeroacoustic measurements. The wind tunnel can achieve a maximum speed of about 80 ms-1. The turbulence intensity of the free jet in the potential core is between 0.1–0.2%. The noise characteristic of the aeroacoustic wind tunnel was validated by three case studies. All of which can demonstrate a very low background noise produced by the bare jet in comparison to the noise radiated from the cylinder rod/flat plate/airfoil in the air stream.The constructions of the aeroacoustic wind tunnel and the hemi-anechoic chamber are financially supported by the School of Engineering and Design at Brunel University

    Adsorbate site determination with the scanning tunneling microscope: C<sub>2</sub>H<sub>4</sub> on Cu{110}

    Get PDF
    Scanning tunneling microscopy at T=4 K has been used to determine directly the binding site of a molecule chemisorbed on a metal surface, namely, ethene on Cu〈110〉, by simultaneous imaging of the adsorbate and the underlying lattice. The molecule is found to bond in the short bridge site on the close-packed rows with its C-C axis oriented in the 〈110〉 direction

    Tip‐induced lifting of the Au{100} (hex)‐phase reconstruction in a low temperature ultrahigh vacuum scanning tunneling microscope

    Get PDF
    The clean Au{100} surface is known to be reconstructed, forming a pseudohexagonal (5×27) outermost layer. This structure is observed both in ultrahigh vacuum (UHV) and in the electrochemical environment at potentials corresponding to small negative surface electronic charges. Using a UHV scanning tunneling microscope (STM) at 77 K we have observed that the reconstruction can be lifted at large positive sample biases. The 20% less dense bulk‐terminated surface is produced and the excess material appears as irregularly shaped gold clusters. Over a period of a few minutes, however, the surface relaxes back to the pseudo‐hexagonal phase, a process that can also be followed with the STM

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society
    • 

    corecore