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This paper represents the design principle of a quiet, low turbulence and moderately 

high speed aeroacoustic wind tunnel which was recently commissioned at Brunel University. 

A new hemi-anechoic chamber was purposely built to facilitate aeroacoustic measurements. 

The wind tunnel can achieve a maximum speed of about 80 ms
-1

. The turbulence intensity of 

the free jet in the potential core is between 0.1–0.2%. The noise characteristic of the 

aeroacoustic wind tunnel was validated by three case studies. All of which can demonstrate a 

very low background noise produced by the bare jet in comparison to the noise radiated 

from the cylinder rod/flat plate/airfoil in the air stream.    

Nomenclature 

2h = serration amplitude (root-to-tip distance) of the sawtooth 

A = aperture of the screen 

Ainlet = inlet duct area immediately after the centrifugal fan  

Aoutlet = outlet area of the nozzle exit inside the anechoic chamber 

AR = area ratio 

B = porosity of the screen 

C = airfoil chord length 

CR = contraction ratio of the nozzle 

D = diameter of the screen wire 

f = frequency 

K = pressure drop coefficient of the screen 

P
’
 = acoustic pressure fluctuations 

P = pitch of the screen 

N1, N2 = number of measurement points correspond to Ainlet and Aoutlet, respectively 

TL = transmission loss of the silencer 

x, y, z = coordinates in the streamwise, vertical and spanwise directions, respectively 

  serration angle of the sawtooth 

 

I. Introduction 

he difference between an aerodynamic wind tunnel and an aeroacoustic wind tunnel is normally not large, 

except that the latter type tends to produce air stream which has a low-noise characteristic. If a test object is 

submerged in the quiet air stream within a sound diffusing environment, aero-acoustic radiation from the test object 

and the spectral information could then be quantified with a reasonable accuracy. 

Aeroacoustic wind tunnels are continuously designed and installed by university research groups around the 

world. A very well known aeroacoustic wind tunnels is in the Virginia Tech of the United States
1
. The 1.83 m x 1.83 
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m test section can achieve maximum speed of about 75 ms
-1

 without blockage. The test section, which is inside an 

anechoic chamber, consists of two Kevlar-clothed side walls. These side walls act like a normal flow surface, but 

they are also acoustically “transparent”. For a high pressure loading experiment, both the aerodynamically and 

acoustically free field conditions can be achieved. A slightly smaller anechoic wind tunnel facility at University of 

Florida
2
 consists of a test section of 0.74 m x 1.12 m. The air jet produced by the open nozzle will expand and a 

downstream diffuser will collect the air. Both the open nozzle and the diffuser are situated inside an anechoic 

chamber. A fan is placed downstream of the diffuser to create pressure difference and air is sucked through the 

upstream nozzle. The maximum test section speed is reported as 76 ms
-1

. Background noise level produced by the 

free jet is shown to be very low.   

Many university-based aeroacoustic wind tunnels can also be found in Europe. The open jet wind tunnel 

anechoic facility at the Ecole Centrale de Lyon has already been extensively used for experimental airfoil noise 

studies
3,4 

. Few years ago, a quiet and low turbulence open jet wind tunnel (DARP Rig) was installed at the Institute 

of Sound and Vibration Research, University of Southampton
5
. The jet speed can achieve more than 100 ms

-1
 

through a 150 mm x 450 mm nozzle. At the same time, extremely low background noise is emitted, which enables 

the aeroacoustic measurements on the airfoil noise and car window noise to be carried out there
6-9

. The key 

performance targets of the DAPR rig are to produce low noise and low turbulence free jet, which are achieved by 

two large silencers, extensive woven wire mesh screens throughout the circuit and a carefully-designed nozzle. More 

recently, the Brandenburg Technical University Cottbus in Germany commissioned a new low noise wind tunnel
10

 

and it is suitable to be used in both the reverberant and anechoic environments. Circular and rectangular nozzles of 

different contraction ratios can be interchanged, which produce approximately 0.2% and 0.1% freestream turbulence 

intensities, respectively. Many airfoil self noise studies have already been performed in this facility
11, 12

. The 

University of Adelaide from Australia built an aeroacoustic wind tunnel facility which is situated in an 8 m
3
 cubic 

anechoic chamber with a cut-off frequency at 200 Hz
13

. A nozzle-diffuser configuration is adopted, where a 

centrifugal fan is used to propel air through a silencer, settling drum and nozzle before entering the collecting 

diffuser. The maximum speed of the free jet is reported to be around 40 ms
-1

 through a 225 mm x 75 mm nozzle 

exit. Similarly, low background noise is reported and many airfoil self noise studies have been carried out using this 

facility
14, 15

. There are also other university-based aeroacoustic wind tunnels, for example in refs
16-18

, which have 

been built for different purposes.   

A brand new aeroacoustic research facility is recently commissioned at Brunel University in the United 

Kingdom. This facility is intended for airfoil noise study mainly in the low-to-moderate pressure loading 

configurations initially. A new 4 m x 5 m x 3.4 m hemi-anechoic chamber is also purposely built to house the 

aeroacoustic wind tunnel and to facilitate the far field noise measurements. The main objective of this paper is to 

present the design principle of the aeroacoustic wind tunnel (Sections II and III). Freestream turbulence intensity of 

the exit jet is measured and presented in Section IV. The acoustical performance of the wind tunnel is validated by 

three case studies in Section V. The first case concerns the tonal noise produced by the flow over a cylinder rod with 

rough surface. The second case concerns a flat plate flush mounted to one side of the nozzle exit. The boundary 

layer was tripped near the nozzle exit and noise measurements were performed for the flat plate with and without a 

serrated sawtooth trailing edge. The third case investigates the broadband self noise generated by a tripped 

NACA0012 airfoil at zero angle of attack. The conclusion and outlook are discussed in Section VI.  

 

II. Design considerations 

The open jet wind tunnel at Brunel University aims to achieve low noise radiation and low residual turbulence in 

the free jet. The major design constraint is the rather restricted 5.8 m (width) x 9.0 m (length) x 4.6 m (height) 

available room space which should accommodate every component of the open jet wind tunnel, including the 

centrifugal fan, as well as the anechoic chamber. The initial concern was that noise generated by the centrifugal fan 

will propagate with the flow inside the air duct. A silencer with a high transmission loss is used to attenuate the air-

borne noise. Another concern is that the centrifugal fan noise can penetrate through the anechoic chamber wall 

directly. To minimize such impact an acoustically lined-compartment could be built to “contain” the centrifugal fan.  

It was decided that the open jet wind tunnel should be the blower type capable of producing a maximum mass 

flow rate of about 3.0 kgs
-1

. A nozzle contraction ratio, CR, of 20–25 is pre-selected to achieve low turbulence 

intensity for the free jet, which is set at below 0.3% as the performance target. In order to minimize flow separation 

and excessive pressure drop within the wind tunnel circuit, the change of cross-sectional area in the axial direction 

will be minimized. For the case when there is a curve duct, the area ratio, AR, will be kept close to unity. To achieve 

a low background noise of the free jet, a large in-line silencer will be installed. The acoustical performance target is 
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decided upon by the background noise to be at least 5 dB lower than the airfoil/flat plate trailing edge broadband self 

noise at a free jet velocity of at least 80 ms
-1

. The overall layout of the open jet wind tunnel with respect to the 

anechoic chamber, as well as some of the design details for each wind tunnel components, will be presented in the 

next section.           

III. The open jet wind tunnel 

During the previous experience in designing the Southampton DARP rig, the open jet wind tunnel has to be 

adapted to the existing ISVR anechoic chamber and the surrounding building structures. For example, the short, 

large area ratio and 90
o
-curved diffuser represents a supercritical and unfavorable part of the wind tunnel in order to 

overcome some very tight spaces
19

. Although the rather small room space available for the aeroacoustic wind tunnel 

at Brunel represents a design constraint, there is also an advantage that each components of the wind tunnel, 

including the anechoic chamber, can be treated as the “design variable”. After several design iterations, the overall 

dimension of the anechoic chamber is decided to be 4 m (width) x 5 m (length) x 3.4 m (height). As shown in Fig. 1, 

the anechoic chamber is placed against the east side of the wall, leaving clearances of 2.0 m, 1.8 m and 1.8 m from 

the west, north and south sides of the walls, respectively. The wind tunnel enters the anechoic chamber from the 

north side, whereas a 90
o
-bend acoustically-lined outlet attenuator (air collector) is placed at the south side of the 

anechoic chamber for air ventilation purpose.   

The plan, side and front views of the aeroacoustic wind tunnel are shown in Fig. 1. A centrifugal fan is placed at 

the north side to propel air vertically upward through an offset diffuser. The expanded air is then turned towards a 

90
o
-bend duct (AR = 1) before enters the silencer, which is placed on top of the anechoic chamber. The air inside the 

silencer is flowing towards the south side, before turning 180
o
 at the far end and continuing its journey in the 

opposite direction towards the north side. After reaching the north end, the air exits the silencer and is turned by a 

90
o
-bend duct (AR = 1) towards the floor. From there, the air is expanded a little bit before it is turned again towards 

 

Figure 1. Plan, side and front 

views of the aeroacoustic wind 

tunnel and the anechoic 

chamber. 
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90
o
 anti-clockwise with a constant area duct and enters the anechoic chamber from the north side. After passing a 

series of flow conditioning devices, the air accelerates inside the nozzle and discharging to the atmosphere. The 

expanded jet will then reaches the acoustically lined-outlet attenuator and turns upwards through a splitter-type 

silencer, exiting the anechoic chamber. 

Detailed descriptions of the major components of the aeroacoustic wind tunnel are provided below:        

A. Centrifugal fan 

In order to generate a maximum mass flow rate of 3.0 kgs
-1

, the pressure rise which the fan should generate, after 

taking into account of the cumulative static pressure loss of the wind tunnel components, is slightly above 8 kPa. A 

30 kW AC-powered centrifugal fan is chosen to fulfill the above requirements. An electric inverter is used to 

digitally-adjust the current input to the centrifugal fan, thus controlling the mass flow rate (the exit jet velocity) of 

the nozzle in an accurate manner.   

As shown in Fig. 1, the centrifugal fan has to be placed quite close to the north side of the anechoic chamber. To 

minimize the structural noise transmission, an acoustically-lined compartment could be used to contain the 

centrifugal fan. The design of the compartment will take into considerations that it should not restrict the supply of 

fresh air to the fan’s inlet and overheat the fan. This compartment has not been implemented yet. This is because a 

preliminary test did not reveal significant break-in of the centrifugal fan noise into the anechoic chamber. 

Nevertheless, there is a provision to add this feature to the wind tunnel in the future.   

Another issue with the centrifugal fan is the possible structural vibration when in operation. In order to avoid the 

structurally-borne noise that could be transmitted via the floor, four anti-vibration mounts were used to isolate the 

centrifugal fan from the floor. Another possible route of transmission of the vibration is through the connection 

between the centrifugal fan and the wind tunnel components. To minimize this effect, a flexible vinyl tube is used to 

connect the centrifugal fan to the wind tunnel duct. This flexible tube is shown to be effective in dampening the 

vibration.        

B. Primary silencer 

A significant by-product of the centrifugal fan when in operation is the noise it produces alongside the air 

stream. If not treated properly, the noise component will propagate through the wind tunnel ducts and eventually 

radiate to the inside of the anechoic chamber. It is therefore important to attenuate the flow-borne noise as soon as 

possible. A 10 m long silencer is built for this purpose. The silencer is in the form of “2-pass” plenum chamber, 

which incorporates an 180
o
-lined bend. The cross-sectional area for each pass of the plenum chamber is about 1.2 m 

x 1.2 m (including the basalt wool liners and the plywood wall). All interior surfaces are lined with the basalt wool 

dissipative liner of 150 mm thickness with a 4 mm thick facing cloth (Thermal 650 E-glass Needlemat) to inhibit the 

Figure 2. Measured sound transmission loss of the silencer 

10
2
 10

3
 10

4
 

20 

30 

40 

50 

10 

60 

S
o

u
n

d
 t

ra
n

sm
is

si
o

n
 l

o
ss

 (
d

B
) 

Frequency (Hz) 



 

 
 

 

5 

flow delamination. The basalt wool liners are held together by the perforated metal frames. The outer wall of the 

silencer is made from the 18 mm thick plywood. 

The choice of the acoustic material is based on the objective of achieving low flow resistivity and high density. 

A typical mineral wool used for the silencer, for example the Rockwool, produces flow resistivity between 20–40 

kPa.s.m
-2

 for a density range of 50–80 kgm
-3

, respectively
20

. However, a basalt wool could produce a flow resistivity 

of 15 kPa.s.m
-2

 at a density of 120 kgm
-3

, which implies that a dense acoustic material could be used in a silencer 

whilst a superior sound absorbing performance is still maintained. 

The acoustic transmission loss, TL, could be estimated in situ from the following relationship: 

 
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                                                            (1) 

Under a no flow condition, the noise source is emitted by a 100W loudspeaker. The input signal to the 

loudspeaker is driven by a white noise generator and an audio amplifier. The loudspeaker is placed directly above 

the centrifugal fan ducted outlet with a cross-sectional area of Ainlet. A condenser microphone is used to measure the 

fluctuating sound pressures P(f)inlet at N1 number of grid points within the Ainlet to obtain the averaged acoustic 

spectrum. Similarly, the fluctuating sound pressures at the nozzle exit P(f)outlet are measured in N2 number of grid 

points within the exit area of Aoutlet to obtain the averaged value. Figure 2 shows that between 40–55 dB transmission 

loss in the frequency range of 400–8000 Hz could be expected from this primary silencer. It is useful to point out 

that extra splitter type silencer could be added at a later date if more sound reduction is necessary. According to the 

layout in Fig. 1, the ideal places for the additional splitter silencer could either be at the diffuser upstream of the S2, 

or at the settling chamber between S3 and S4.       

C. 90
o
-bend ducts and other flow conditioning devices 

As shown in Fig. 1, the wind tunnel consists of three 90
o
-bend ducts, all of which are with AR = 1. Each bend 

also consists of three equally-spaced flow splitter vanes to guide the flow and to reduce the magnitude of the 

secondary flow due to the centrifugal force acting on the flow. Neither the large scale boundary layer separation, nor 

the flow unsteadiness, is expected to occur in these bend ducts. 

The flow conditioning devices, as indicated in Fig. 1 for the S1, S2, S3 and S4 at different locations, mainly 

consist of woven wire screens and honeycombs. For the honeycomb, the chosen configuration fulfills the 

recommendation that the depth of the honeycomb should be greater than 10 times the cell diameter to allow 

adequate flow straightening
21

. For the woven wire screen, a greater margin of pressure drop per screen is in favor to 

achieve a uniform flow. The pressure drop coefficient, K, generally works against the porosity square, B
2
. Therefore, 

a screen with a smaller porosity will produce a high pressure drop. However, a lower limit on the porosity should be 

observed because the resulting configuration may result in jet coalescence between the meshes, which will add 

instabilities to the flow and increase the turbulence level. This means that there should be an upper limit on the 

REF

Cell dia. (mm) Thickness (mm) D(mm) A(mm) P(mm) B K D(mm) A(mm) P(mm) B K D(mm) A(mm) P(mm) B K

S1 0.45 0.82 1.270 0.417 2.47

S2 0.28 0.57 0.850 0.450 2.05

S3 6.35 63.5 0.28 0.57 0.850 0.450 2.05 0.355 1 1.355 0.545 1.23

S4 6.35 63.5 0.355 1 1.355 0.545 1.23 0.165 0.68 0.845 0.648 0.72 0.165 0.68 0.845 0.648 0.72

Honeycomb Woven Mesh Layer 1 Woven Mesh Layer 2 Woven Mesh Layer 3

B = porosity 

K = pressure drop coefficient 

D = wire diameter 

A = aperture 

P = pitch 

 

Table 1. Data for the honeycombs and screens used in the aeroacoustic wind 

tunnel. Refer to Fig. 1 for locations of the S1, S2, S3 and S4. 
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pressure drop coefficient for each screen, which is recommended to be below 2.5 [ref 22]. Therefore, a common 

practice is to use several screens of low K-value instead of a single screen of large K-value, although the former case 

will inevitably increase the overall length of the “screen pack”. Another design valuable, which associates with the 

screen porosity and the pressure drop coefficient, is the woven wire diameter, D. A mesh wire with a large D can 

produce a cascade of turbulent eddies across the spectrum. Ideally, the wire diameter D should be as small as 

possible to avoid excessive vortex shedding into the flow. The decay rate of the turbulence intensity generated by 

the vortex shedding from a cylindrical body is ~ (x/D)
-5/7

. This dictates the minimum separation distance which must 

be considered between each screen. All of the design criteria described above have been taken into consideration. 

The final geometrical parameters of the honeycombs and woven wire screens for S1–S4 are reflected in Table 1.             

D. Nozzle 

A nozzle is used to convert the static pressure into the kinetic energy and to discharge the high speed air at the 

nozzle exit. The conversion process represents the key mechanism of straining the freestream turbulence eddies, 

thereby reducing the velocity fluctuations. Using a three-dimensional nozzle, the transverse and spanwise fluctuating 

components of the turbulence eddies could be reduced. The level of the eddies-straining is therefore a function of the 

area ratio AR of the nozzle.   

However, nozzle with a large area ratio and a comparatively small axial length will have a higher risk of 

boundary layer separation at the inflection point. On the other hand, nozzle with a longer axial length will be less 

prone to boundary layer separation, but it may also result in excessive growth of the boundary layer thickness near 

the nozzle exit. A benchmark nozzle similar to the DARP rig at Southampton (AR = 25) is manufactured and 

installed in the Brunel wind tunnel. The scaling factor between the DARP nozzle and the Brunel nozzle is 2/3, which 

results in the following dimensions for the Brunel nozzle: inlet = 867 mm x 867 mm; outlet = 100 mm x 300 mm. 

For a mass flow rate of 3.0 kgs
-1

, this represents a maximum free jet velocity of approximately 80 ms
-1

.  

It is worth mentioning that the rather short nozzle height at the exit (100 mm) may not be suitable for airfoil 

experiment in the off-design, high pressure loading configurations due to the large jet deflection. There is a plan to 

manufacture another nozzle with a larger exit area in the future. To achieve a freeflow-like condition when the 

airfoil is set at a moderately large angle of attack, a method similar to the Virginia Tech’s will be employed to 

connect the nozzle with a Kevlar-walled test section.    

                          

Figure 3. Distributions of the turbulence intensities at 8 mm downstream of the 

nozzle exit plane at jet velocity of (a). 10 ms
-1

, (b). 20 ms
-1

, and (c). 30 ms
-1
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IV. Turbulence intensities produced by the free jet 

The turbulence intensity of the free jet was measured with a single hot wire probe of 5 m diameter, and 1.25 

mm wire length. Figure 3 shows the distributions of the turbulence intensities at 15 measurement points equally 

distributed at 8 mm downstream of the nozzle exit plane in the y–z direction. The speed range was set at 10–30 ms
-1

 

at an interval of 10 ms
-1

. From the figure, the potential core of the free jet has a typical range of turbulence intensity 

between 0.1–0.2%, with the higher limit tends toward the lower end of the jet velocity. The results suggest that the 

initial target of below 3% turbulence intensity has been achieved, which would allow airfoil trailing edge noise to be 

the dominant noise source in an aerodynamically clean air stream.        

 

V. Acoustical performances of the open jet wind tunnel 

In this paper, instead of presenting the spectrum of the background noise in a bare jet configuration per se, the 

acoustical performance of the open jet wind tunnel will be assessed against several cases where test objects are 

placed in the air stream. The results are discussed in the following sections. 

A. Vortex shedding noise from a bluff body  

In this test, a 12-mm diameter rough surface cylinder rod was placed in the free jet at different speeds. This 

particular configuration is chosen due to the likelihood of a high amplitude tone and a moderate level of broadband 

noise to be radiated from the cylinder rod with rough surface. A condenser microphone was placed at approximately 

0.8 m from the cylinder rod at a polar angle of 90
o
 to measure the radiated noise. Noise measurements were first 

taken at free jet velocities of 20 ms
-1

, 40 ms
-1

 and 60 ms
-1

, respectively, without the presence of the cylinder rod. It is 

expected that the dominant noise source in this case comes from the bare jet. After that, the cylinder rod was placed 

100 mm downstream of the nozzle exit and the experiment was repeated at the three jet speeds as above. Note that 

the cylinder rod was held “freely” inside the potential core of the jet without the use of side plates. This means that 

the total length of the cylinder rod is larger than the width of the nozzle exit. The advantage of this configuration is 

that there is no contribution from the side plates, which are normally used to hold the test objects, to the radiated 

noise. However, impingement from the nozzle shear layer to the rod and some three-dimensional flow effects might 

also exist.  

The noise results are summarized in Fig. 4. The tonal components associated with the cylinder rod follow a 

Strouhal numbers between 0.22–0.23. This indicates that the tonal noise is likely to be produced by the vortex 

shedding behind the cylinder rod. The tonal components are shown to be well above the background noise produced 

by the bare jet, sometimes as large as 50 dB difference. At the jet speeds of 40 ms
-1

 and 60 ms
-1

, the broadband noise 

produced by the cylinder rod at frequencies above the tonal component is about 10 dB above the bare jet level. At a 

Figure 4. Comparisons of the noise radiated by the 12 mm diameter cylinder rod 

with rough surface () and the wind tunnel background noise produced by the bare 

jet (- - -) at freestream velocities of: (a). 20 ms
-1

, (b). 40 ms
-1

 and (c). 60 ms
-1

.  

(a) (b) (c) 
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lower jet speed of 20 ms
-1

, and to some extents at 40 ms
-1

, the noise spectrum of the bare jet at the high frequency is 

similar to the noise floor level in the quiescent condition.  

As a summary, all the tonal and broadband components produced by the rough surface cylinder rod are well 

above the background noise produced by the bare jet across the frequency range between 0.1–22 kHz. 

B. Flat plate broadband noise reduction by serrated trailing edge 

Contrary to the case (A) above, the test configuration chosen in this case represents a lower limit in terms of the 

measurable noise difference in aeroacoustics. The set up of the experiment is shown in Fig. 5a. A flat plate model of 

300 mm (width) x 295 mm (length) was flush mounted to one side of the nozzle exit. Rough sandpaper was used to 

trip the flat plate boundary layer to turbulent near the nozzle exit. The trailing edge of the flat plate can be 

interchanged between a straight type and a serrated sawtooth type, which is defined by the following specifications: 

root-to-tip distance (2h) = 20 mm, and a serration angle () = 25
o
.  

Figure 5b shows the far field noise measured over the flat plate fitted in turn with a straight trailing edge and a 

serrated sawtooth trailing edge. The microphone was placed at 0.8 m above the trailing edge at a polar angle of 90
o
. 

The jet speed was set at 30 ms
-1

. The noise spectral in Fig. 5b demonstrates that the serrated sawtooth trailing edge 

produces a broadband noise level which is 0.5–1.0 dB lower than that produced by a straight trailing edge at a 

frequency range between 0.5–3 kHz. Several repeatability tests produce the same outcomes.   

Some theories
23, 24

 assume a full Kutta condition at the trailing edge when formulating expression for the far field 

noise. The current flat plate configuration means that flow is only present on one side of the surface, and there is no 

flow at the underside. The radiated trailing edge self noise level is therefore expected to be lower than when there is 

flow on both sides of the surface, such as in the airfoil case. This may explain the smaller amount of broadband 

noise reduction by a serrated sawtooth trailing edge in the flat plate configuration. Compared to an airfoil, 

broadband noise reduction between 3–5 dB can normally be achieved. This will be demonstrated in Fig. 6 in the 

next section.  

As a summary, the background noise produced by the bare jet of the aeroacoustic wind tunnel is still 

considerably lower than the trailing edge self noise radiated under the current flat plate configuration, which allows 

quantification of the noise reduction when a serrated sawtooth trailing edge is used. 

Figure 5. (a). Experimental setup for the measurements of self noise produced by flat plate fitted in 

turn with a straight trailing edge and a serrated trailing edges in a flat plate configuration; (b). Trailing 

edge self noise reduction at freestream velocity of 30 ms
-1

: straight trailing edge (); serrated 

sawtooth trailing edge () and the wind tunnel background noise produced by the bare jet (- - -). 

(a) (b) 

* 

* 

* - these struts have since been removed 

from the wind tunnel 
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C. Airfoil trailing edge broadband self noise 

One of the main studies which will be carried out in the anechoic wind tunnel in the future is the airfoil self 

noise. In this section, a preliminary test has been performed to measure the self noise of a NACA0012 airfoil with a 

straight trailing edge and a serrated sawtooth trailing edge (similar serration parameters as the flat plate case above). 

The airfoil has a chord length (C) of 0.15 m, and the width is similar to the width of the nozzle exit at 0.3 m. The 

airfoil was fixed to the nozzle exit by two side plates. In this test the airfoil was set at zero degree angle of attack. 

Boundary layer tripping elements were applied to both sides of the airfoil at x = 0.1C from the leading edge. The 

microphone was placed at about 1.1 m from the trailing edge at a polar angle of 90
o
. The free jet velocity was set at 

25 ms
-1

.  

Figure 6 shows the turbulent broadband noise spectra radiated by a straight trailing edge and a serrated trailing 

edge, respectively. Note that the serrated trailing edge is a nonflat plate type where a certain degree of bluntness 

exists at each sawtooth root. Vortex shedding has been shown to be emanated from the blunt roots
9
, which then 

proceeds to generate the tonal noise as depicted in Fig. 6. At frequency higher than the tonal component, between 1–

7 kHz, significant broadband noise reduction has been achieved by the serrated trailing edge. Although not shown 

here, similar results can be obtained at higher velocity.         

As a summary, the turbulent broadband noise results in Fig. 6 demonstrate that the aeroacoustic wind tunnel is 

suitable for airfoil self noise study. Other noise sources from the airfoil, such as the airfoil instability tonal noise, the 

blunt-induced tonal noise and the gust–leading edge interaction noise, are also quantifiable albeit the results are not 

shown here. 

 

VI. Conclusion and outlook 

This paper represents the design principle of a quiet, low turbulence and moderately high speed aeroacoustic 

wind tunnel which was recently commissioned at Brunel University. A new hemi-anechoic chamber was purposely 

built to facilitate aeroacoustic measurements. Note that the design and characterization of the anechoic chamber are 

not covered in this paper. Given that both the wind tunnel and the anechoic chamber need to be built from scratch in 

an otherwise confined space, virtually every components are treated as the design “variables”. For example, the final 

dimensions of the silencer plenum should depend upon the desired acoustical transmission loss, the contraction ratio 

of the nozzle, the preference of a small area ratio for the bend ducts, the size and location of the anechoic chamber 

and so on. Several design iterations are therefore needed to achieve the final layout.                  

Figure 6. Comparison of the sound power spectral density (dB/Hz) for a NACA0012 

airfoil with a straight trailing edge () and a nonflat plate type serrated trailing edge (- - -). 

The jet speed is at 25 ms
-1

 and the airfoil is set at zero degree angle of attack. 

Tonal noise 

produced by the 

sawtooth roots 

Broadband noise 

reduction by the 

serrated trailing edge 
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The free jet produced by the wind tunnel can achieve a maximum velocity of about 80 ms
-1

. The potential core of 

the free jet contains very low turbulence intensity (0.1–0.2%). The noise characteristic of the aeroacoustic wind 

tunnel was validated by three case studies. All of which can demonstrate a very low background noise produced by 

the bare jet in comparison to the noises radiated from the cylinder rod/flat plate/airfoil in the air stream.  

Due to the rather modest nozzle height at the exit, the aeroacoustic wind tunnel is only suitable for airfoil 

measurements at low to medium pressure loadings. For an airfoil at a large angle of attack, or a highly cambered 

airfoil is used, the jet deflection might be excessive. In addition, the nozzle shear layer could also be too close to the 

airfoil trailing edge. To overcome these, there is a plan to manufacture another nozzle with a larger exit area, 

conversely a reduced jet speed, in the future. To achieve a freeflow-like condition when the airfoil is set at a 

moderately large angle of attack, a method similar to the Virginia Tech’s will be employed to connect the nozzle 

with a Kevlar-walled test section.  
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