Anomalously dispersive cavities, particularly white light cavities, may have
larger bandwidth to finesse ratios than their normally dispersive counterparts.
Partly for this reason, their use has been proposed for use in LIGO-like
gravity wave detectors and in ring-laser gyroscopes. In this paper we analyze
the quantum noise associated with anomalously dispersive cavity modes. The
vacuum field energy associated with a particular cavity mode is proportional to
the cavity-averaged group velocity of that mode. For anomalously dispersive
cavities with group index values between 1 and 0, this means that the total
vacuum field energy associated with a particular cavity mode must exceed ℏω/2. For white light cavities in particular, the group index approaches
zero and the vacuum field energy of a particular spatial mode may be
significantly enhanced. We predict enhanced spontaneous emission rates into
anomalously dispersive cavity modes and broadened laser linewidths when the
linewidth of intracavity emitters is broader than the cavity linewidth.Comment: 9 pages, 4 figure