8,346 research outputs found
Atomic and nuclear physics with stored particles in ion traps
Trapping and cooling techniques play an increasingly important role in many areas of science. This review concentrates on recent applications of ion traps installed at accelerator facilities to atomic and nuclear physics such as mass spectrometry of radioactive isotopes, weak interaction studies, symmetry tests, determination of fundamental constants, laser spectroscopy, and spectroscopy of highly-charged ions. In addition, ion traps are proven to be extremely efficient devices for (radioactive) ion beam manipulation as, for example, retardation, accumulation, cooling, beam cleaning, charge-breeding, and bunching
The Reaction 7Li(pi+,pi-)7B and its Implications for 7B
The reaction 7Li(pi+,pi-)7B has been measured at incident pion energies of
30-90 MeV. 7Li constitutes the lightest target nucleus, where the pionic charge
exchange may proceed as a binary reaction to a discrete final state. Like in
the Delta-resonance region the observed cross sections are much smaller than
expected from the systematics found for heavier nuclei. In analogy to the
neutron halo case of 11Li this cross section suppression is interpreted as
evidence for a proton halo in the particle-unstable nucleus 7B.Comment: 4 pages, 4 figure
Diffusion and jump-length distribution in liquid and amorphous CuZr
Using molecular dynamics simulation, we calculate the distribution of atomic
jum ps in CuZr in the liquid and glassy states. In both states
the distribution of jump lengths can be described by a temperature independent
exponential of the length and an effective activation energy plus a
contribution of elastic displacements at short distances. Upon cooling the
contribution of shorter jumps dominates. No indication of an enhanced
probability to jump over a nearest neighbor distance was found. We find a
smooth transition from flow in the liquid to jumps in the g lass. The
correlation factor of the diffusion constant decreases with decreasing
temperature, causing a drop of diffusion below the Arrhenius value, despite an
apparent Arrhenius law for the jump probability
Nuclear Shape Effect on the g Factor of Hydrogenlike Ions
The nuclear shape correction to the g factor of a bound electron in 1S-state
is calculated for a number of nuclei in the range of charge numbers from Z=6 up
to Z=92. The leading relativistic deformation correction has been derived
analytically and also its influence on one-loop quantum electrodynamic terms
has been evaluated. We show the leading corrections to become significant for
mid-Z ions and for very heavy elements to even reach the 10^(-6) level.Comment: 4 pages, 1 figur
Ionization energy of Li 6,7 determined by triple-resonance laser spectroscopy
Rydberg level energies for Li7 were measured using triple-resonance laser excitation, followed by drifted field ionization. In addition to the principal n P2 series, weak Stark mixing from residual electric fields allowed observation of n S2 and hydrogenic Stark manifold series at higher n. Limit analyses for the series yield the spectroscopic ionization energy EI (Li7) =43 487.159 40 (18) cm-1. The Li 6,7 isotope shift (IS) was measured in selected n P2 Rydberg levels and extrapolation to the series limit yields IS (EI) 7,6 =18 067.54 (21) MHz. Results are compared with recent theoretical calculations: EI values from experiment and theory agree to within 0.0011 cm-1, with the remaining discrepancy comparable to uncertainty in QED corrections of order α4 Ry. The difference between experiment and calculated mass-based IS (EI) yields a change in nuclear charge radii between the two isotopes Ύ r2 7,6 =-0.60 (10) fm2. © 2007 The American Physical Society
A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams
A Penning trap ion accumulator, cooler, and buncher for low energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about has been achieved. Isobar separation has been demonstrated for radioactive rare earth ion beams delivered by the ISOLDE on-line mass separator
Effect of anisotropic impurity scattering in superconductors
We discuss the weak-coupling BCS theory of a superconductor with the
impurities, accounting for their anisotropic momentum-dependent potential. The
impurity scattering process is considered in the t-matrix approximation and its
influence on the superconducting critical temperature is studied in the Born
and unitary limit for a d- and (d+s)-wave superconductors. We observe a
significant dependence of the pair-breaking strength on the symmetry of the
scattering potential and classify the impurity potentials according to their
ability to alter T_c. A good agreement with the experimental data for Zn doping
and oxygen irradiation in the overdoped cuprates is found.Comment: 31 pages, RevTex, 15 PostScript figure
Good practice in mental health care for socially marginalised groups in Europe: a qualitative study of expert views in 14 countries
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Measuring kinetic coefficients by molecular dynamics simulation of zone melting
Molecular dynamics simulations are performed to measure the kinetic
coefficient at the solid-liquid interface in pure gold. Results are obtained
for the (111), (100) and (110) orientations. Both Au(100) and Au(110) are in
reasonable agreement with the law proposed for collision-limited growth. For
Au(111), stacking fault domains form, as first reported by Burke, Broughton and
Gilmer [J. Chem. Phys. {\bf 89}, 1030 (1988)]. The consequence on the kinetics
of this interface is dramatic: the measured kinetic coefficient is three times
smaller than that predicted by collision-limited growth. Finally,
crystallization and melting are found to be always asymmetrical but here again
the effect is much more pronounced for the (111) orientation.Comment: 8 pages, 9 figures (for fig. 8 : [email protected]). Accepted for
publication in Phys. Rev.
Event-based relaxation of continuous disordered systems
A computational approach is presented to obtain energy-minimized structures
in glassy materials. This approach, the activation-relaxation technique (ART),
achieves its efficiency by focusing on significant changes in the microscopic
structure (events). The application of ART is illustrated with two examples:
the structure of amorphous silicon, and the structure of Ni80P20, a metallic
glass.Comment: 4 pages, revtex, epsf.sty, 3 figure
- âŠ