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Using molecular-dynamics simulation, we calculate the distribution of atomic jumps in Cu33Zr67 in the
liquid and glassy states. In both states the distribution of jump lengths can be described by a temperature-
independent exponential of the length and an effective activation energy plus a contribution of elastic displace-
ments at short distances. Upon cooling the contribution of shorter jumps dominates. No indication of an
enhanced probability to jump over a nearest-neighbor distance was found. We find a smooth transition from
flow in the liquid to jumps in the glass. The correlation factor of the diffusion constant decreases with
decreasing temperature, causing a drop of diffusion below the Arrhenius value, despite an apparent Arrhenius
law for the jump probability.
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I. INTRODUCTION

Metallic glasses are of great interest both fundamentally
and due to numerous applications. The absence of strong
covalent bonds makes them the prime example of random
dense packing. Atomic transport in metallic glasses and their
melts is generally considered to be effected by two distinct
mechanisms: flow in the liquid and thermally activated hop-
ping in the glassy state. See Ref. 1 for a review. When a glass
forming liquid is cooled towards the glass transition diffu-
sion drops faster than predicted by an Arrhenius law. The
diffusion coefficient is often described by a Vogel-Fulcher
law which can be rationalized, e.g., by a free volume descrip-
tion. Mode coupling theory predicts for fragile glass formers,
to which amorphous metallic alloys belong, a dynamical
transition at a critical temperatureTc well above the glass
transition temperatureTg. At Tc flow motion freezes and dif-
fusion vanishes with a power lawD~ sT−Tcdg apart from a
residual contribution from atomic hopping.2 The mechanism
of this change from flow to hopping is not understood.

In liquids with loose packing, flow is governed by binary
collisions between the constituent atoms. In the undercooled
melt, where the atomic packing is dense, flow is strongly
collective. This is reflected in the observed small isotope
effect of diffusion,3 similar to the one observed earlier in the
glassy state.4 From these experiments it has been concluded
that, both below and above the glass transition, diffusion is
by collective motion of ten or more atoms. This poses the
question of whether the change from flow to hopping is a
change to a new elementary process or whether hopping
evolves out of the flow motion.

Over the last few years computer simulations have pro-
vided considerable insight into the atomic dynamics of
glasses and undercooled liquids. Early molecular-dynamics
(MD) simulations have shown collective jumps in under-
cooled liquids.5,6 Chains of atoms replacing each other were
observed, i.e., the single atoms jumped by a nearest-neighbor
distance. These chains can close to form rings.5,7 Comparing
successive configurations, averaged over typical vibrational
times, one again finds chainlike structures of atoms which
have moved collectively in the undercooled liquid.8–10These

are not necessarily replacement chains. The jump process in
the glassy state has been found to involve many atoms, each
single atom moving only a fraction of the nearest-neighbor
distance in such a jump.11–13

Upon cooling towards the glass transition a striking fea-
ture is seen in the self-part of the van Hove functionGssr ,td
which is related to the probability that an atom has moved by
a distancer during a timet. At high temperaturesGssr ,td is
perfectly Gaussian and broadens~Ît. Upon cooling towards
Tc, and beyond, a tail to larger distances grows with time.
Finally approachingTc an additional second peak at the
nearest-neighbor distance evolves, particularly for the more
mobile components. This effect can be taken as one of the
signatures of the glass transition.14 From this behavior it was
concluded that there is a single peaked distribution of hop-
ping distances.15 The time evolution ofGssr ,td in CuZr could
be reproduced by a simple model involving jumps over
nearest-neighbor distances plus a residual small flow.16 In
this picture the jump motion dominates the diffusion in the
undercooled liquid and the super-Arrhenius drop of diffusion
stems from an increase of the return jump probability, as one
would expect from an increasing number of blocked paths.

In a quantitative investigation of the deviation ofGssr ,td
from a Gaussian, the non-Gaussianity parametera2sT,td was
found to increase rapidly in the undercooled liquid but no
abrupt change nearTc was seen.17,18 The time evolution
could be understood from a model of collective jumps.17

Inspecting the pressure derivative of the diffusion con-
stant, the apparent activation volume, one finds a strong cusp
at Tc which could indicate a change of diffusion
mechanism.19 These different findings pose the question of
whether there is a change in the elementary process of dif-
fusion nearTc, in particular whether one might observe the
evolution of a typical jump process in the glass.

II. SIMULATION DETAILS

Here we report a MD investigation of the atomic jump
lengths in undercooled and glassy Zr67Cu33. For the inter-
atomic interaction we use a modified embedded atom
method.20 The parameters were fitted to reproduce the ex-
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perimental values of Cu, Zr, and CuZr2 crystals. The univer-
sal energy-volume relation of Roseet al.21 was used to de-
termine the anharmonic contributions, not sampled in the
crystal but of essential importance in the disordered glassy
state. We get lattice parametersa=0.363, a=0.323, c
=0.516 anda=0.338, c=10.35 nm (experimental values22

a=0.362,a=0.323,c=0.515 anda=0.322,c=11.18 nm) for
Cu, Zr, and CuZr2, respectively. The CuZr2 lattice is slightly
distorted. The atomic volume, however, is only 2% too large.
The sublimation energies for Cu and Zr(3.53 and 6.34 eV)
agree with experiment. We find enthalpies of fusion per atom
relative to the monoatomic crystalline phases at room tem-
perature ofD fH=0.22 and 0.18 eV(experiment23) for CuZr2
and CuZr, respectively. The vacancy formation energies are
1.32 and 1.63 eV(experiment24 1.28 and.1.5 eV) for Cu
and Zr, respectively. Additionally the phonon dispersion
curves and elastic constants of the monoatomic lattices were
used. In the case of Cu excellent agreement was achieved. In
Zr we get an overall agreement with experiment but some
phonons deviate up to 30%, similar to other work.25,26 No
attempt was made to fine-tune the potential to fully repro-
duce the phase diagram. The detailed form and the param-
eters are given in the Appendix. For more details on the
fitting procedure see Ref. 27.

The MD calculations were done using the velocity Verlet
algorithm with a time-step of 2.5310−15 s and systems of
N=NZr+NCu=1000 atoms with periodic boundary condi-
tions. Previous work on other systems(e.g., soft spheres,
binary Lennard-Jones, Se) by us and other groups has shown
that this size suffices to reproduce the dynamics at elevated
temperatures. As additional test some runs withN=8000
were done for comparison. For the questions investigated in
this work long aging times are more important than large
system sizes. The pressure was kept constant following Ref.
28 using a volume mass of<ÎN·mZr and an additional
damping term to prevent oscillations. Temperature was con-
trolled by a Nosé-thermostat following Hoover.29

Three independent samples were prepared by a quench
from the hot liquid and were aged in intermittent stages, as
shown in Fig. 1. We cool, in steps of 100 K, with a rate of

1012 K/s from 2000 K to the simulation temperature. At
each temperature step the samples were aged for times rang-
ing from 1 ns at 2000 K to 2 ns forTø1000 K, before con-
tinuing the quench. The effective cooling rate was thus low-
ered by about an order of magnitude, compared to a straight
quench with a constant rate. Before the actual measurements
at a given temperature the systems were additionally aged at
constantT for different times, up to 5.5 ns, as indicated by
the dotted lines in Fig. 1.

III. GLASS TRANSITION AND AGING

Experimentally Zr67Cu33 is a good glass former, which
melts at 1310 K(Ref. 30) and can be undercooled by a few
hundred K. The experimental glass-transition temperature
varies from 600 K at cooling rates of 0.01 K/s to 750 K at
106 K/s.30 To determine the glass transition temperature of
our CuZr model we did additional runs without the intermit-
tent aging and monitored the potential energy and the vol-
ume as function of temperature for different quench rates,
ranging fromQ=2.531013 K/s to Q=431010 K/s, see Fig.
2 for the potential energy. The glass transition temperatureTg
was defined by the crossover from the low-temperature to
liquid behavior. In the limited range ofQ covered by the
simulation the dependence ofTg on Q can be expressed by a
logarithmic law31

Tg = s463 + 20.6 lnQd K. s1d

For our lowest quench rateQ=431010 K/s we find Tg
=965 K extrapolating toQ=43106 K/s Eq. (1) gives Tg
=747 K in excellent agreement with the experimental value.

From Fig. 2 together with Eq.(1) we find a linear depen-
dence of the average potential energy per atom atT=0 on the
glass transition temperature

EpsT = 0,Qd = f− 5.7715 + 1.53 10−4TgsQdg eV. s2d

Such a linear equation was also observed in amorphous Se
for both energy and atomic volume.32 In CuZr the quench
rate dependence of the volume is too small to be evaluated.

FIG. 1. Quench history of the samples(solid line). The dotted
lines show the lengths of additional aging before the start of the
measuring runs.

FIG. 2. Average potential energy per atom as function of tem-
perature for different quench rates: from top to bottomQ=2.5
31013, 531012, 131012, 231011, and 431010 K/s.
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Monitoring the average potential energy per atom atT
=1000 K, near the glass transition temperature, starting at
the end of the quench, Fig. 1, we find that it drops in 35 ns
by about 0.014 ev. The statistics is not sufficient to deter-
mine the decay law unambiguously.

IV. DIFFUSION AND HETEROGENEITY

The average atomic mean square displacements(MSQD),
from the respective configurations after aging, are shown in
Fig. 3 in a double logarithmic plot. For short times one ob-
serves an increase~t2 which is typical for vibrational and
ballistic motion. For long times the MSQD increases~t, in-
dicative of long-range diffusion. Lowering the temperatures
below T=1400 K the plateau, typical for the undercooled
liquid and the glass, evolves between these two limits. This
onset of the plateau correlates well with the experimental
melting temperatureTm=1310 K.30 At the lowest tempera-
tures, in the ps range, one can just see some small wiggles
which reflect the vibration spectrum.

The diffusion coefficients of the two components, Fig. 4,
were calculated in the usual way from the slope of the long
time limit of the MSQD. Fitting the diffusion coefficients in
the undercooled melt according to MCT,

DMCTsTd = D0
MCT/sT − Tcdg, s3d

we find Tc=1025 K andg=1.92 and 1.34 for Zr and Cu,
respectively. A fit to the relaxation time of the intermediate
scattering function with the sameTc gives slightly higher
valuesg=2.2 and 1.57 for Zr and Cu, respectively.1,33 These
numbers are meant as a guide to the relevant temperatures
and are not exact. An alternative fit with the Vogel-Fulcher-
Tammann(VFT) relation

DVFTsTd = D0
VFT expf− EVFT/ksT − TVFTdg s4d

gives for Zr D0
VFT=2.65310−8 m2/s, EVFT=0.28 eV, TVFT

=641 K and for Cu D0
VFT=3.70310−8 m2/s, EVFT

=0.30 eV,TVFT=477 K. In the glass the diffusivity can be
described by the usual Arrhenius law

DArrhsTd = D0
Arrh exps− Em/kTd. s5d

Neglecting the values atT=800 K, which are probably too
high due to too short aging, we obtainD0

Arrh=1.09
310−3 m2/s, Em=1.7 eV, for Zr and D0

Arrh=1.41
310−5 m2/s, Em=1.1 eV, for Cu. Due to the small fitting
range there is a considerable margin of error on these values.
The deviation of the present values from the ones reported
earlier by Gaukel27 is due to the much improved statistics
and aging of the present work. It should further be noted that
fits in the undercooled liquid using the VFT or MCT expres-
sion is strongly influenced by the range of temperatures in-
cluded in the fit. Furthermore in the fits of the previous work
different values ofTc were allowed for Cu and Zr, respec-
tively, whereas in the present work the condition of a unique
valueTc was imposed. The data do not suffice to validate or
invalidate this condition. Including the 800 K values the ac-
tivation energies would be considerably smaller(Em=0.99
and 0.75 eV for Zr and Cu, respectively).1,33

Our results agree well with simulations of a similar NiZr
system where a totally different model for the interatomic
interaction was used.34 The diffusion coefficients of the two
components both in NiZr and in a binary Lennard-Jones19

glass at zero pressure are nearly parallel in the melt, whereas
in Zr67Cu33 they diverge. This effect is probably due to the
weaker coupling between the two components in CuZr. Ex-
perimentally this is reflected in the lower enthalpy of fusion
in CuZr (Ref. 23) compared to NiZr.35

In isotropic diffusion the atomic displacements are Gauss-
ian distributed. In undercooled liquids and in glasses Gaus-
sianity is violated over long time scales. This non-
Gaussianity indicates different mobilities of different atoms
over long time scales. This so-called dynamic heterogeneity
is quantified by the non-Gaussianity parameter36

a2std =
3kDr4stdl
5kDr2stdl2 − 1, s6d

wherek¯l denotes time averaging andDr2std andDr4std are
the mean square and quartic displacements.

FIG. 3. Average mean square displacement as function of time
on a double logarithmic scale. Temperature from top to bottom:
2000, 1800, 1600, 1400, 1200, 1100, 1000, 960, 900, 800, 700 K.

FIG. 4. Diffusion coefficients in Zr67Cu33 (Zr: diamonds, Cu:
spheres). The dashed lines represent a fit with MCT, using the
same temperatureTc for both components, in the undercooled melt
and an Arrhenius fit in the glass.
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Figure 5 shows this non-Gaussianity in the Cu subsystem
for temperatures from 800 to 2000 K. The general behavior
resembles the one observed in other glass formers. In the
liquid above 1400 K dynamic heterogeneity is weak and due
to different local vibrational densities of state. The maximal
non-Gaussianity is at typical vibrational times(ps). With in-
creasing undercooling and even more in the glassy state the
non-Gaussianity rapidly increases. The maximum is reached
later and later. Comparing with Fig. 3, one sees that the
decay of the non-Gaussianity correlates with the onset of the
diffusional part of the MSQD following the plateau. The in-
crease ofa2std from its vibrational value follows theÎt law
which was attributed to collective jump motion.17

V. JUMP LENGTH DISTRIBUTION

After aging we started the observation of jump processes.
To get sufficient statistics we used observation times for the
detection of jumps from 1.25 ns at 1400 K to 2.5 ns below
1200 K. As definition of jump we use a rapid transit of an
atom between two sites of residence. One can see from a
direct inspection of the particle trajectories that in dense liq-
uids or glasses such “jumps” are not ballistic. For the CuZr
system such a trajectory has been shown for a jump of a Cu
atom over a nearest-neighbor distance in Refs. 33 and 37.
Furthermore the amplitudes of short time excursions are very
large which makes an unambiguous definition of jumps dif-
ficult.

One method to detect atomic jumps is to study the “inher-
ent dynamics” by quenching the system at given time inter-
vals “instantaneously” to 0 K and then study the properties
of the “energy landscape.” Here we use a more direct ap-
proach and define jumps by differences between atomic po-
sitions averaged over vibrational times. This means we de-
fine jumps of an atom in terms of absolute coordinates and
not relative to the neighbors of the atom.

As a first step we define for each time step and each atom
an average atomic position by

kRnstdl =
1

d1
E

t−0.5d1

t+0.5d1

Rnst8ddt8. s7d

Since this averaging is done for each time stepkRnstdl is still,
on the scale of the discretization by the simulation time step,

a continuous function but is smoothed by averaging over the
vibrations. An instantaneous jump would cause a steep ramp
in kRnstdl.

For the detection of a jump we use two criteria. First, the
instantaneous position of an atom must differ by a minimum
cutoff length from the average taken at a previous time:

URstd −KRnSt −
1

2
dDLU . r1. s8d

We want to exclude from our jump detection those excur-
sions where an atom has a large amplitude momentarily, but
immediately returns to its old site. Therefore, when the
above condition is fulfilled we additionally compare average
positions separated by the fixed time intervald2

DkRnstdl = kRnst + 0.5d2dl − kRnst − 0.5d2dl. s9d

A jump at time t0 is recorded when this difference for the
first time exceeds a limitr2

uDkRnst0dlu . r2. s10d

The corresponding atomic jump length is defined as

l = DkRnst0dl. s11d

The time interval between the start time of the averaging
for the final configurationt+0.5d2−0.5d1 and the end time of
the averaging for the initial configurationt−0.5d2+0.5d1 is

twait = d2 − d1. s12d

This method is rather CPU-time consuming since at each
time step two averages have to be done for each atom. This
is, however, necessary if one wants to get the necessary time
resolution. Throughout the simulation we used the param-
etersd1=2.5 ps,d2=4 ps, andr1+r2=0.05 nm.

The necessity of averaging the atomic configurations over
given time intervals limits the accuracy of the method. If a
jump is completed in the time intervaltwait its length will be
measured correctly by Eq.(9). A longer “jump time” leads to
a reduced apparent jump length. On the other hand a move-
ment of the atom with constant velocityv during the time
d1+d2 would be detected as jump ifv ·sd1+d2d. r2. Since
averaging over typical vibrational times impliesd1,ps we
do not expect this to be an important limitation.

More serious is the limited resolution of rapid successive
jumps. If two successive jumps are completed within the
time intervaltwait they will be regarded as a single jump. If,
however, the second jump happens near the end of the time
interval it will be counted only partially. For example, should
the second jump be the reverse of the first jump we might
under some circumstances still record some shorter range
jump, given by the sum of the forward jump and a fraction of
the back jump. On the other hand, if the first jump is rapidly
followed by a successive forward jump, normally correlated
with the first jump, we record an effective jump length which
is too short. These two effects should approximately cancel
for the investigated temperatures. For lower temperatures
where the fraction of back-jumps increases it leads to an
overestimate of the mean square displacement calculated
from the jumps, compared to the exact value.

FIG. 5. Non-Gaussianity versus time of the Cu subsystem in
Zr67Cu33 on a logarithmic scale. Temperatures from top to bottom:
800, 900, 1000, 1100, 1200, 1400, 1600, 1800, and 2000 K.
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Once the jump criteria hold for a time step they will nor-
mally hold for a subsequent time interval. To avoid double
counting, therefore after each jump, we introduce a dead
time d2 during which jumps are not counted. This will lead to
small inaccuracies, mainly for the shortest jump lengths.

From the recorded jumps we can calculate how often and
how far each atom jumped during the observation time. This
defines the average atomic jump rates

gjump
j slcutd =

1

Njtobs
o

l,lcut

Njump
j sT,l,tobsd, s13d

where Njump
j sT, l ,tobsd is the number of jumps of atoms of

speciesj with jump length in the intervalfl −dl /2 ,l +dl /2g
with tobs andT the observation time and temperature, respec-
tively. Figure 6 shows the rates for both components versus
temperature for different cutoff lengthl ø lcut. As to be ex-
pected the jump rates increase with temperature. No obvious
break is apparent atTc or Tg. For the lower temperatures the
jump rate for Zr is clearly much smaller than that for Cu,
particularly for the largerlcut. This is in accordance with the
lower diffusivity of Zr. Jumps over nearest-neighbor dis-
tances are observable for Zr only well aboveTg. For Cu they
are observed at all temperatures down to 800 K. At the high-
est temperature the rate for all jumps withl ø lcut=0.06 nm
approaches the theoretical limit of resolution of this simula-
tion twait

−1 =2.531011 s−1. This limits the applicability of the
method to higher temperatures. It reflects the gradual transi-
tion from jumps to flow. It becomes meaningless to assign
average starting positions to the atoms. In Fig. 6 average
jump rates are shown. Individual atoms will have higher
rates. However, the dynamic heterogeneity is no longer so
important atT=1400 K so that the deviations from the aver-
age are not too large. We will argue further down that the
majority of apparent jumps with short lengths is actually due
to the elastic displacement of surrounding atoms, accompa-
nying all jumps.

For a more detailed investigation, we recorded for each
detected jump the time of the jump and the initial and final

positions of the jumping atom, according to Eq.(7). From
these data the probability that an atom jumps by a certain
distance is calculated. Summing over the atomic jumps we
also calculate the atomic mean square displacements which
can be compared with the ones gained directly in the simu-
lation.

The probability that an atom jumps over a distancel is

PjsT,lddl =
1

Njtobs
Njump

j sT,l,tobsd. s14d

Figure 7 shows the distribution of the numbers of jumps per
second against jump length for the larger majority compo-
nent Zr for temperatures ranging from 900 to 1400 K(top)
and for the smaller minority component Cu for temperatures
ranging from 800 to 1400 K(bottom). Looking first at the
curves for Zr one clearly sees no indication of a preferred
jump length. The distribution can be fitted with a simple
form

PjumpsT,ld = Ajumpe
−Ejump/kTe−l/l jump s15d

with Ajump
Zr =1.8331028 1/sm sd, Ejump

Zr =1.51 eV, andl jump
Zr

=0.033 nm. The apparent activation energyEjump
Zr agrees

within some 10% with the diffusional one in the glassy state.
In the expression for the undercooled melt, Eq.(4), it corre-
sponds to the apparent activation energy at 1140 K. As
shown by the dotted line this fit works well in the whole
temperature range investigated which spreads over bothTg
andTc. Of courseEjump

Zr has to be interpreted as an effective
activation energy. There will be a spread of activation ener-
gies which is absorbed by the prefactorAjump

Zr . The probabil-
ity of jumps over a nearest-neighbor distance is two orders of
magnitude less than the one for jumps over half that distance.

In the case of Cu the situation seems more complicated.
The probability of jumps over a nearest-neighbor distance is
only one order of magnitude less than the one for jumps over

FIG. 6. Atomic jump ratesgjump
j slcutd on a logarithmic scale over

temperature for Zr for different cutoff lengthslcut: Zr (top) and Cu
(bottom). Lines from top to bottom:lcut=0.06, 0.1, 0.15, 0.2,
0.25 nm.

FIG. 7. Distribution of jumps/second over jump length for Zr
(top) and Cu (bottom). Temperatures from top to bottom: 1400,
1200, 1100, 1000, and 900 K. The dotted lines indicate the fits by
exponential jump length distributions, see text. The respective
nearest-neighbor distances for the two components are indicated by
the vertical dotted lines.
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half that distance. Different from Zr, there is a distinct tail
to higher jump lengths whose origin is not absolutely clear.
One would expect a cutoff ofDkRnstdl for distances not
much greater than the nearest-neighbor distance. In a densely
packed material a jump over larger distances is highly im-
probable. We rather think that the tail is due to jumps which
follow so rapidly that we cannot resolve them. This view is
supported also by the correlation factors exceeding unity. We
will see below that the contribution of these “extra long
jumps” drops atTc to less than 20% of the total atomic mean
square displacement.

For short jump distances we see again the “elastic tail”
which evolves into a shoulder before it merges with the
curve for the more important long jumps. For these different
fitting laws apply in the glass and in the undercooled liquid.
In the glass, the Arrhenius form, Eq.(15), works just as for
Zr. The fitted values areAlong jump

Cu =9.7931026 1/ss md,
Elong jump

Cu =0.82 eV, andl long jump
Cu =0.024 nm. This apparent

activation energy is about 15% less than the diffusionalEm

used in Fig. 4 but is higher than the value gained after in-
cluding T=800 K in the fit of the diffusivity.

This fit breaks down in the undercooled liquid regime.
The slopes of the curves in Fig. 7 decrease with temperature,
at variance with Eq.(15). Extending the fit from the glass
into the liquid one finds still quite good values for jumps
over nearest-neighbor distances. However, forl =0.4 nm at
T=1400 K, Eq.(15) already underestimates the jump prob-
ability by nearly an order of magnitude. The jump length
distribution for Cu in the undercooled liquid can be fitted by
an exponential law with a temperature-dependentl long jumpsTd

Plong jump
Cu sT,ld = Blong jump

Cu e−l/l long jumpsTd T . Tc s16d

with Blong jump
Cu =1.9631022 1/sm and l long jumpsTd=0.038,

0.043, and 0.05 nm forT=1100, 1200, and 1400 K, respec-
tively. No direct physical origin for this relation is evident.
From the fact that the Arrhenius-like temperature depen-
dence, Eq.(15), is still applicable for jumps over nearest-
neighbor distances the most probable explanation seems to
be that with increasing temperature more and more rapidly
succeeding jumps, which cannot be resolved into separate
single jumps, occur with predominantly additive direction.
This is in accordance with the increase in correlation factor
discussed later on in this paper.

For both components we observe a rapid increase of the
jump length distribution toward short jump length. There is a
clear excess above the value given by Eq.(15). For Zr atT
=900 K, where the feature is most prominent, it can be fitted
by PjumpsT, ld~1/l5, close to the~1/l4 dependence follow-
ing from the 1/r decay of elastic displacements. We there-
fore conclude that this rapid increase reflects the elastic dis-
placements accompanying all jumps. Due to dense packing
they will also be present in the melt but are much more
prominent in the glassy state. Two effects will strongly re-
duce their contribution to diffusion. First, the elastic dis-
placement patterns are different for each jump leading to a
cancellation of the bulk of these displacements after a few
jumps. In the present system this is clearly observed in the
glass when the Cu atoms are by more than an order of mag-

nitude more mobile than the Zr ones. The Cu atoms move in
a sluggish matrix of Zr atoms. Jumps of the Cu atoms will be
accompanied by displacements of the Zr atoms without de-
stroying their topology. After a few subsequent jumps, domi-
nated by the faster Cu, the Zr will more or less be back to
their original sites. Our algorithm will pick up the occasional
large displacements of the Zr but not their return in smaller
steps. We will see this effect below in the mean square dis-
placement of Zr atTø900 K, Fig. 10. The dynamic hetero-
geneity, meaning that at any given time only a small subset
of atoms is mobile, will increase this effect and spread it to
the second component. Secondly, after a jump process the
glass is locally excited and relaxes toward the local equilib-
rium. This is done by comparatively slight shifts of the av-
erage atomic positions. This again reduces the contribution
of the small lengths to diffusion.

VI. AVERAGE MEAN SQUARE DISPLACEMENTS

To check the importance of the different jump lengths for
diffusion we compare the average atomic mean square dis-
placement(MSQD) taken directly from MD with the one
obtained by adding the jumps used to obtain the distribution
of Fig. 7:

uDRjumpst,lcutdu2 =KU o
t8,t

DRn.lcut

DRnst8dU2L
n

, s17d

where k¯ln indicates averaging over atoms and configura-
tions. We do this for different lower cutoffs of the jump
lengthlcut. In the undercooled melt, Figs. 8 and 9, there is an
excellent agreement between the exact curves and the ones
gained this way. In the figures, we added touDRjump

n st , lcutdu2
the vibrational MSQD which can be obtained from the short
time behavior.

FIG. 8. Average atomic mean square displacement versus time
at T=1400 K (full line). Atomic mean square displacement calcu-
lated from the jumps used for the distribution, Fig. 1, for different
cutoffs: from top to bottom all jumps with jump lengths greater than
0.06, 0.1, 0.15, 0.2, and 0.25 nm.
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We find for Zr that even at the temperatureT=1400 K,
i.e., about 40% aboveTc, the MSQD and, therefore also dif-
fusion, is dominated by jumps much shorter than the nearest-
neighbor distanceRNN

Zr <0.3 nm. Jumps of more than
0.25 nm contribute about 5%. AtT=1000 K their contribu-
tion vanishes. In Cu, jumps overRNN

Cu <0.25 nm give atT
=1400 K about a quarter of the MSQD. AtT=1000 K this
contribution is diminished to 10%. This means that atT
=Tc short jumps dominate the diffusion of both components.

At T=900 K, in the glass, the situation is similar for Cu.
For Zr the contribution of long jumps is nearly negligible.
The contribution of short jumps,l ,0.1 nm and particularly
l ,0.06 nm(dashed and dotted lines in Fig. 10), is severely
overestimated. This can be traced to the “elastic displace-
ments” discussed in the previous section. The motion of the
Cu atoms in the Zr matrix causes displacements of the latter.

Since the Zr subsystem is sluggish compared with that of Cu,
it has some memory over several jumps of the Cu system. Zr
atoms will have a preference to return to their original site.
Or speaking in terms of potential energy, the system can be
approximated for some time as being in a minimum with the
Cu motion as perturbation. The Zr atoms remain in their
“cages” over many “cage escapes” of the Cu atoms. While
the Zr is in its cage it will occasionally perform jumps picked
up by the algorithm, followed by several short jumps, not
picked up. This can be seen by monitoring the motion of the
single atoms. An indication of this effect can be seen in Fig.
10, where for Zr, the dotted curve initially follows the real
MSQD (full line) but later rises also when the real MSQD of
Zr stays more or less constant while the MSQD of Cu in-
creases. This is the discussed effect of Zr atoms temporarily
being displaced by Cu jumps and their return in several
smaller steps not being detected. In this sense the “surplus”
of detected Zr jumps corresponds to an in-cage motion.

We argued above that the rapid increase ofPjsT, ld for l
→0 is due to elastic displacements, i.e., displacements
caused in the matrix when an atom or a group of atoms
jumps, and that these displacements will not contribute
strongly to diffusion. As diffusion drops with sinking tem-
perature, the ratio of probability of these nondiffusive
“jumps” over the one given by Eq.(15) rises strongly, see
Fig. 6. If one does a simple correction of the curves for the
two smaller cutoffs(lcut=0.06 and 0.1 nm) by this ratio, the
excess is removed and the MSQD is actually underestimated
by 30%. Such a simple correction does, of course, not dis-
tinguish between “in cage” and “out of cage jumps.” These
“nondiffusive short-range jumps” exist also in lattices. A
jump of an atom into a neighboring vacancy site causes dis-
placements of the surrounding atoms which will disappear
again when the vacancy moves on. In lattices these can eas-
ily be measured and accounted for by means of lattice geom-
etry and symmetry. In an amorphous material this is no
longer possible and it becomes onlya posterioriclear which
of the short-range displacements contribute to diffusion and
which are nondiffusive.

Decreasing the temperature to 800K the contribution of
these elastic or “in cage” jumps increases further and be-
comes visible also for the more mobile Cu atoms, Fig. 11.
This can be attributed to the increasing dynamic heterogene-
ity. As with most of the Zr atoms, an increasing number of
Cu atoms becomes immobile on the time scale of several
jumps. The Cu atoms, mobile at a given time, move in a
matrix of Zr and immobile Cu atoms which are temporarily
displaced.

VII. CORRELATION FACTOR

In analogy to Eq.(17) we can define an “uncorrelated
MSQD” by

uDRuncorrst,lcutdu2 =K o
t8,t

DRn.lcut

uDRnst8du2L
n

s18d

and a correlation factor38

FIG. 9. Average atomic mean square displacement versus time
at T=1000 K (full line). Atomic mean square displacement calcu-
lated from the jumps used for the distribution, Fig. 1, for different
cutoffs: from top to bottom all jumps with jump lengths greater than
0.06, 0.1, 0.15, 0.2, and 0.25 nm.

FIG. 10. Average atomic mean square displacement versus time
at T=900 K (full line). Atomic mean square displacement calcu-
lated from the jumps used for the distribution, Fig. 1, for different
cutoffs: from top to bottom all jumps with jump lengths greater than
0.06, 0.1, 0.15, 0.2, and 0.25 nm.
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fcorr = lim
t→`

uDRjump
n st,lcutdu2

uDRuncorr
n st,lcutdu2

. s19d

Correlation factors have been studied in the past exten-
sively for diffusion in lattices.39,40 If the jumps are com-
pletely uncorrelated(random walk) one hasfcorr=1. This
would be the case for an isolated interstitial atom, e.g., H in
Pd, moving between equivalent sites. For diffusion by a va-
cancy mechanism, neglecting lattice displacements, the cor-
relation factor is reduced in simple lattices tofcorr<1−2/z,
wherez is the number of nearest neighbors. The term 2/z
accounts for the direct backjumps of the tracer atom into the
same vacancy. Exact calculations give for the vacancy
mechanism in fcc latticesfcorr=0.78, whereas for a diamond
lattice one hasfcorr=0.5 due to the lower number of neigh-
bors. In simple lattices the correlation factor is given by ge-
ometry alone and is temperature independent. In more com-
plicated structures when more than one type of jump is
involved the correlation factor becomes temperature depen-
dent. A bias due to an external field increases the correlation
factor.

If one would study self-diffusion in a simple fcc lattice
along the lines of the two preceding sections one would ob-
tain two sets of jumps with two sets of correlation factors.
“Diffusive jumps” would have a jump length of about a
nearest-neighbor distance and a correlation factor as dis-
cussed above. The short “nondiffusive jumps,” i.e., the tem-
porary displacements due to the “diffusive jumps,” on the
other hand, would have a correlation factorfcorr=0. The total
correlation factor is thus somewhat reduced from the rigid
lattice value. Total correlation factors zero are observed in
lattices when atoms jump between a finite number of sites,
e.g., the cage motion of interstitial Co in Al.41

These general considerations assume that the diffusing
particle is completely thermalized between jumps, i.e., that
there are no memory effects. At temperatures near the melt-
ing point this is no longer the case. In simulations of vacancy
diffusion in Al and Na lattices it was found, that when the
waiting time between successive jumps shrinks to the order

of vibrational time scales(ps), successive jumps become cor-
related, forward jumps become more frequent and, subse-
quently, the correlation factor for vacancy diffusion becomes
larger than the random walk valuefcorr.1.40,42

Transferring these results to the amorphous and under-
cooled liquid states, one expects to find total correlation fac-
tors considerably smaller than 1 for diffusion via a vacancy-
type mechanism, and near to 1 for diffusion via an inherent
mechanism as postulated in Ref. 1. The correlation factor for
the longer jumps should be larger than for the shorter ones
since the latter have a larger nondiffusive contribution. Cool-
ing below Tg, the correlation factor should drop because
more and more jump directions become blocked. Unfortu-
nately, due to the computational limitations, this effect can-
not be explored fully at present. In the liquid, where we have
seen that the jump frequency becomes comparable to the
vibration time, we expect an increase of the correlation factor
with temperature.

The correlation factors calculated from the observed
jumps are shown in Fig. 12. By their very construction, the
immediately following jumps are excluded due to the dead
time between jumps. The general trends are clearly seen in
Fig. 12. The correlation factors for the long jumps are close
to 1 or even larger, indicating diffusion by an inherent
mechanism. The total correlation factor drops upon cooling
which explains the drop of the diffusion constant below its
Arrhenius line despite the seemingly constant effective acti-
vation energy for the jumps themselves. The fact that the
increase of the correlation factor for Cu jumps to values
around 2 forT=1400 is striking. This will be an effect of
insufficient thermalization between jumps. It also indicates
the transition from jump to flow motion. For the larger and
heavier Zr atoms this effect is strongly suppressed.

VIII. DISCUSSION

Upon quenching, the mean square displacements, in a log-
log representation, show for both components of Cu33Zr67

FIG. 11. Average atomic mean square displacement versus time
at T=800 K (full line). Atomic mean square displacement calcu-
lated from the jumps used for the distribution, Fig. 1, for different
cutoffs: from top to bottom all jumps with jump lengths greater than
0.06, 0.1, 0.15, 0.2, and 0.25 nm.

FIG. 12. Average atomic mean square displacement versus time
at T=800 K (full line). Atomic mean square displacement calcu-
lated from the jumps used for the distribution, Fig. 1, for different
cutoffs: from top to bottom all jumps with jump lengths greater than
0.25, 0.20, 0.15, 0.1, and 0.06 nm.
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the normal behavior of a transition from a hot liquid, via an
undercooled one, to a glass. Between the~t2 behavior, indi-
cating ballistic motion or vibrations, and the~t regime of
diffusion a plateau develops. The diffusion dynamics can be
described by the mode coupling scenario. However, the tem-
perature dependences of the two components do not run as
parallel as in the often used binary Lennard-Jones system
either under constant volume43 or constant pressure
conditions.19 Such a difference could be the origin of the
order of magnitude difference between diffusivity of Ni and
Ti and the one gained via the Einstein relation from the vis-
cosity in ZrTiCuNiBe bulk glasses44 which was, similarly to
the present findings, explained by a faster diffusion of the
smaller components in a relatively rigid Zr matrix. This be-
havior seems to be typical for ZrCu systems. In a simulation
of the binary NiZr system no such pronounced effect was
found.7

Upon quenching, the dynamic heterogeneity rises rapidly
above its vibrational value at temperatures belowT
=1400 K which, in absence of a reliable estimate of the
melting point of our system, we take as a rough indication of
undercooling.

The distribution of the jump lengths of both components,
both above and belowTc is a smooth function of distance,
definitely excluding a preference of nearest-neighbor jumps.
Such a smooth distribution is to be expected for collective
jumps as they are seen in the typical chainlike motion of
metallic glasses.8,9,11 Using the energy landscape approach
similar results were found for a binary Lennard-Jones system
near Tc (Ref. 45) and were also attributed to cooperative
motion which in that system would be additionally furthered
by the inherent higher density. It is encouraging that the two
different and complimentary approaches lead to the same
conclusion.

This result of a missing typical jump length will not be
affected by the rapid quench inherent to simulations. Both
experiment1 and simulation of either activation volume19 or
isotope effect46 indicate that insufficient aging would, if any-
thing, enhance the number of single particle jumps with their
inherent length scale.

For the structure forming majority component Zr, the
jump length distribution is given by the product of two
terms, an Arrhenius term for the temperature dependence and
a temperature-independent distribution of jump lengths. An
Arrhenius law for the temperature dependence, irrespective
of the details of the barrier distribution has been derived
earlier in an effective medium treatment of hopping in dis-
ordered materials.47 The spatial dependence shows a power
law for short distances and an exponential one for the longer
distances. This form is again in agreement with the findings
of the energy landscape study.45 The power-law part for short
distances can be understood as being caused by the elastic
displacement accompanying any hopping process. These
would be also seen for hopping in a lattice where, different
from a disordered system, they can be easily identified from
translational symmetry. They are largely reverted by subse-
quent hops and will not contribute markedly to long-range
diffusion. The exponential long-distance dependence results,
in our opinion, from the collectivity of the jumps. Jumps
are closely correlated to low-frequency quasi-localized

vibrations.48 The cores of these show, similarly to the true
localized vibrations, an exponential decay of the
amplitudes.49

The jump length distribution of the minority component
Cu has qualitatively the same behavior, however, with one
important difference. The Arrhenius scaling with temperature
breaks down aboveTc. The distribution is stretched to greater
length and also the total number of long jumps is increased.
We have related this to lacking thermalization between
jumps, a view supported by the correlation factors.

The correlation factors are of order unity. This is a signa-
ture of diffusion by an inherent mechanism, as opposed to a
defect (quasivacancy) mediated one which would lead to
clearly smaller correlation factors. The correlation factor of
Cu for T.Tc is an exception. It increases strongly with tem-
perature. Such correlation factors.1 are known to result
when the time between jumps no longer allows for thermal-
ization. It indicates, in this respect, the transition from
jumplike motion to flow.

From the contribution of the different jump length to the
mean square displacements it is obvious that long-distance
jumps only play a minor role in Zr diffusion. Their role is
greater for Cu where atTc jumps over more than 0.2 nm
contribute more than 30%. From direct inspection of indi-
vidual jumps one sees, that in the usual chain of collectively
jumping atoms Cu atoms will show the largest displace-
ments. At higher temperatures, often more than one Cu atom
jumps over a nearest-neighbor distance. The replacement
chains observed in the early work5,6 are a special case of this
scenario.

The absence of a preferred jump length might,prima fa-
cie, be taken as a contradiction to the time evolution of the
van Hove self-correlation function where, in the undercooled
liquid, clearly a secondary peak at the nearest-neighbor dis-
tance evolves. One of the authors showed earlier for the
same material that the time evolution of the van Hove self-
correlation function for Cu nearT=Tc can be reproduced by
a model comprising only nearest-neighbor jumps and a resi-
due of short-distance jumps, called flowlike motion.16 For Cu
an apparent activation energy of 850 meV, in good agree-
ment with the present value of 820 meV, was given. Com-
bining this and the present results one can conclude that the
secondary peak in the van Hove function indicates preferred
resting positions for the Cu atoms in the Zr matrix which is
rigid on the time scale of the Cu diffusion. A similar conclu-
sion was arrived at for the Lennard-Jones system from the
energy landscape picture45,50 when the dynamic heterogene-
ity creates a sufficiently rigid matrix of immobile particles.
Diffusion becomes dominated by transitions between these
minima, a connected network of minima is formed51–53 or
“coarse graining” occurs.54 The strongly different diffusivi-
ties of the present system enhance the effect and are an ad-
ditional source of “metabasins.”55 The diffusion of the Cu in
the deeply undercooled liquid and even more in the glass has
features of a diffusion between “traps.”

In the previous work,16 as the temperature is lowered, an
increase in jump reversal was reported. This is compatible
with the reported correlation factors of the present work. A
relative increase of reversible jumps for lower temperatures
has also been observed from a jump analysis of the binary
Lennard-Jones system belowTc.

56
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IX. SUMMARY

In summary we calculated the diffusion of Cu and Zr
above and below the glass transition temperature. Different
to the commonly studied Lennard-Jones system Cu shows in
the undercooled liquid a strongly enhanced diffusivity, com-
pared to the majority component Zr. We think that this effect
is related to the weaker coupling between the two compo-
nents in the present system which is seen also in the reduced
enthalpy of fusion.

The distribution of atomic jumps in the liquid and glassy
state can be described by simple exponential dependencies
on jump length and temperature. There is a smooth transition
from flow to hopping. For the faster Cu this is reflected in the
undercooled liquid by correlation factors exceeding unity,
indicating a breakdown of thermalization between jumps. We
find no preferred jump length around the nearest-neighbor
distance. The observed secondary peaks in the van Hove
function are, therefore, clearly not an effect of the jumps
directly but of increased waiting times at given sites. This
effect will be enhanced by the growth of the dynamical het-
erogeneity upon cooling. On the time scale of the inverse of
the jump frequency of the mobile atoms, more and more
atoms are immobile and provide a semirigid background thus
creating preferred sites. The effect is seen more strongly by
the smaller atoms(Cu).

APPENDIX: MODIFIED EMBEDDED ATOM
INTERACTION (MEAM)

We use the MEAM model developed for the CuZr system
by Gaukel.27 For completeness we give below the analytic
form and the parameters.

In the embedded atom method(EAM) model57 the inter-
atomic interaction is described by pair potentialFtwo and an
embedding energyFeasrd which accounts for the additional

many body effects due to the electronic density

Epot = o
m,n=1

mÞn

N
1

2
Ftwo

lmlnsRmnd + o
n=1

N

Fea
ln frsRndg, sA1d

whereRmn= uRm−Rnu is the distance between atomsm andn,
and ln indicates the type of atom, in our case Zr or Cu.

For the pair potential we use the analytic form

FtwosRmnd = c1e
−c2Rmn

+ c3e
−c4sRmn − R0d2 + c5sRmnd6

+ c6sRmnd7 + c7. sA2d

The small parametersc5, c6, andc7 are given by the condi-
tion that Ftwo and its first two derivatives vanish atRcutoff.
The parameters are given in Table I for Zr and Cu. For the
mixed interaction we use the mean

Ftwo
ZrCusRmnd = fFtwo

ZrZrsRmnd + Ftwo
CuCusRmndg/2. sA3d

For the embedding term, we use the form proposed by
Baskes58 for both components

FeafrsRndg = c1rsRndlnfc2rsRndg sA4d

with the parameters given in Table II.
In the original EAM, the densityr in Eqs.(A1) and(A4)

is given as a superposition of radial functions

r0sRnd = o
m=1

mÞn

N

fsRmnd. sA5d

For the functionfsRmnd we use an exponential plus addi-
tional terms to set the function and its first two derivatives to
zero at the cutoff.

fsRmnd = c1e
−c2Rmn

+ c3sRmndc4 + c5sRmndc4+1 + c6. sA6d

The parameters are compiled in Table III.

TABLE I. The constants of the pair potential(A2).

Zr Cu

c1 [eV] 3.4571553104 6.5479553105

c2 4.479563 6.487234

c3 [eV] −1.062312 −2.383022

c4 0.8614267 0.1318588

R0 [Å] 2.952510 0.6049550

c5 feV/Å6g −4.971823310−8 −3.085439310−4

c6 feV/Å7g 6.337047310−9 5.310256310−5

c7 [eV] 6.636436310−4 0.9001767

Rcutoff [Å] 6.57620462 4.44761582

TABLE II. The constants used in the embedding term(A4).

Zr Cu

c1 feV·Å3g 2.71082977 2.02891465

c2 fÅ3g 0.737740301 0.876399217

TABLE III. Parameters of the spherical density function
(A6).

Zr Cu

c1 f1/Å3g 1.04537268 0.896989894

c2 0.123135389 0.286315587

c3 f1/Å3g 5.54697310310−12 6.74032288310−6

c4 15.1751328 7.51090487

c5 f1/Å3g −9.43929033310−13 −1.22957801310−6

c6 f1/Å3g −0.597896189 −0.345100552

Rcutoff [Å] 5.16447906 4.28405051

TABLE IV. Parameters of the angular correction in the MEAM
(A7).

Zr Cu

c3 −5.36035659 0
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In the MEAM additional angular terms are added to allow
for covalent effects58 needed to describe nonideal hcp lat-
tices. We restrict ourselves to terms in the third power of the
cosine of the apex angle

cossQmnld = SRmnRln

RmnRln D .

The density then takes the form

rsRnd = r0sRndexp3 1

fr0sRndg2c3

3 o
l,m=1

lÞn

mÞn

N

cos3sQmnldf3
lmsRmndf3

l lsRlnd4 . sA7d

The angular correction in the MEAM is only needed for
Zr as apex atom but not for Cu. We, therefore, putc3=0 for
Cu, Table IV. For the radial function in the angular correc-
tion term we used the same form as for the spherical part

f3sRmnd = c1e
−c2Rmn

+ c3sRmndc4 + c5sRmndc4+1 + c6 sA8d

with the parameters given in Table V.
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