607 research outputs found

    Circular Orbits in Einstein-Gauss-Bonnet Gravity

    Get PDF
    The stability under radial and vertical perturbations of circular orbits associated to particles orbiting a spherically symmetric center of attraction is study in the context of the n-dimensional: Newtonian theory of gravitation, Einstein's general relativity, and Einstein-Gauss-Bonnet theory of gravitation. The presence of a cosmological constant is also considered. We find that this constant as well as the Gauss-Bonnet coupling constant are crucial to have stability for n>4n>4.Comment: 11 pages, 4 figs, RevTex, Phys. Rev. D, in pres

    Finite Temperature DMRG Investigation of the Spin-Peierls Transition in CuGeO3_3

    Full text link
    We present a numerical study of thermodynamical properties of dimerized frustrated Heisenberg chains down to extremely low temperatures with applications to CuGeO3_3. A variant of the finite temperature density matrix renormalization group (DMRG) allows the study of the dimerized phase previously unaccessible to ab initio calculations. We investigate static dimerized systems as well as the instability of the quantum chain towards lattice dimerization. The crossover from a quadratic response in the free energy to the distortion field at finite temperature to nonanalytic behavior at zero temperature is studied quantitatively. Various physical quantities are derived and compared with experimental data for CuGeO3_3 such as magnetic dimerization, critical temperature, susceptibility and entropy.Comment: LaTeX, 5 pages, 5 eps figures include

    Excitations of the field-induced soliton lattice in CuGeO3

    Full text link
    Here we report the first inelastic neutron scattering study of the magnetic excitations in the incommensurate phase of a spin-Peierls material. The results on CuGeO3 provide direct evidence of a finite excitation gap, two sharp magnetic excitation branches and a very low-lying excitation which is identified as a phason mode, the Goldstone mode of the incommensurate soliton lattice.Comment: 5 pages, revtex, 4 figures (*.eps), win-zippe

    Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains

    Full text link
    We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. Investigating the ground state energy of the static bond-alternating chain, we find that the instability to a dimerized chain depends on the value of the spin-phonon coupling, unlike the case of S=1/2. The spin state is the dimer state or the uniform Haldane state depending on whether the lattice distorts or not, respectively. At an intermediate value of the spin-phonon coupling, we find the first-order transition between the two states. We also find the coexistence of the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos, replaced figure

    Temperature Dependence of Spin and Bond Ordering in a Spin-Peierls System

    Full text link
    We investigate thermodynamic properties of a one-dimensional S=1/2 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. In particular we study how spin and lattice dimerize as a function of the temperature, which gives a fundamental process of the spin-Peierls transition in higher dimensions. The degree of freedom of the lattice is taken into account adiabatically and the thermal distribution of the lattice distortion is obtained by the thermal bath algorithm. We find that the dimerization develops as the temperature decreases and it converges to the value of the dimerization of the ground state at T=0. Furthermore we find that the coupling constants of spins fluctuate quite largly at high temperature and there thermodynamic properties deviate from those of the uniform chain. Doping of non-magnetic impurities causes cut of the chain into short chains with open boundary. We investigate thermodynamic properties of open chains taking relaxation of the lattice into consideration. We find that strong bonds locate at the edges and a defect of the bond alternation appears in the chain with odd number of sites, which causes enhancement of the staggered magnetic order. We find a spreaded staggered structure which indicates that the defect moves diffusively in the chain even at very low temperature.Comment: 7 pages, 17 figures; added comments on section 2 and 3, corrected typo

    Bubbles nucleating on superhydrophobic micropillar arrays under flow

    No full text

    The record of a high-energy event in a mud entrapment on the inner shelf off the Guadiana river

    Get PDF
    Recent environmental changes associated with high-energy events and human impacts were investigated in a mud entrapment confined in the paleo-Guadiana incised valley. Those changes were recorded in a gravity core during the last 2500 years. An erosional event seems to have occurred at ca. 500 cal yr BP but it is not clear how much sediment was removed. This event was followed by an increase in river discharges until ca. 465 cal yr BP while the benthic foraminiferal faunas were dominated by species associated with shallow-water sandy sediments. Upward, sedimentological and benthic foraminiferal variations indicated environmental changes, promoted by variable sediment supplies to the shelf.info:eu-repo/semantics/publishedVersio

    Using electronic structure changes to map the H-T phase diagram of alpha'-NaV2O5

    Full text link
    We report polarized optical reflectance studies of \alpha'-NaV2O5 as a function of temperature (4-45 K) and magnetic field (0-60 T). Rung directed electronic structure changes, as measured by near-infrared reflectance ratios \Delta R(H)=R(H)/R(H=0 T), are especially sensitive to the phase boundaries. We employ these changes to map out an H-T phase diagram. Topological highlights include the observation of two phase boundaries slightly below T_{SG}, enhanced curvature of the 34 K phase boundary above 35 T, and, surprisingly, strong hysteresis effects of both transitions with applied field.Comment: 4 pages, 3 figures, PRB accepte

    Dilepton production by bremsstrahlung of meson fields in nuclear collisions

    Get PDF
    We study the bremsstrahlung of virtual omega mesons due to the collective deceleration of nuclei at the initial stage of an ultrarelativistic heavy-ion collision. It is shown that electromagnetic decays of these mesons may give an important contribution to the observed yields of dileptons. Mass spectra of positron-electron and muon pairs produced in central Au+Au collisions are calculated under some simplifying assumptions on the space-time variation of the baryonic current in a nuclear collision process. Comparison with the CERES data for 160 AGev Pb+Au collisions shows that the proposed mechanism gives a noticeable fraction of the observed lepton pairs in the intermediate region of invariant masses. Sensitivity of the dilepton yield to the in-medium modification of masses and widths of vector mesons is demonstrated.Comment: 14 page
    corecore