6,082 research outputs found

    Cloud-top meridional momentum transports on Saturn and Jupiter

    Get PDF
    Cloud-tracked wind measurements reported by Sromovsky et al. were analyzed to determine meridional momentum transports in Saturn's northern middle latitudes. Results are expressed in terms of eastward and northward velocity components (u and v), and eddy components u and v. At most latitudes between 13 and 44 deg N (planetocentric), the transport by the mean flow () is measurably southward, tending to support Saturn's large equatorial jet, and completely dominating the eddy transport. Meridional velocities are near zero at the peak of the relatively weak westward jet; along the flanks of that jet, measurements indicate divergent flow out of the jet. In this region the dominant eddy transport () is northward on the north side of the jet, but not resolvable on the south side. Eddy transports at most other latitudes are not significantly different from measurement error. The conversion of eddy kinetic energy to mean kinetic energy, indicated by the correlation between and d/dy (where y is meridional distance) is clearly smaller than various values reported for Jupiter, and not significantly different from zero. Both Jovian and Saturnian results may be biased by the tendency for cloud tracking to favor high contrast features, and thus may not be entirely representative of the cloud level motions as a whole

    Lifetime statistics of quantum chaos studied by a multiscale analysis

    Get PDF
    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a Silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines graph theory, energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.Comment: 4 pages, 6 figure

    Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations

    Get PDF
    Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two dimensional self-consistent hybrid shock simulations provide the electric and magnetic fields in which test particle electrons are followed. A range of different shock types, shock normal angles, and injection energies are studied. When the Mach number is low, or the simulation configuration suppresses fluctuations along the magnetic field direction, the results agree with theory assuming magnetic moment conserving reflection (or Fast Fermi acceleration), with electron energy gains of a factor only 2 - 3. For high Mach number, with a realistic simulation configuration, the shock front has a dynamic rippled character. The corresponding electron energization is radically different: Energy spectra display: (1) considerably higher maximum energies than Fast Fermi acceleration; (2) a plateau, or shallow sloped region, at intermediate energies 2 - 5 times the injection energy; (3) power law fall off with increasing energy, for both upstream and downstream particles, with a slope decreasing as the shock normal angle approaches perpendicular; (4) sustained flux levels over a broader region of shock normal angle than for adiabatic reflection. All these features are in good qualitative agreement with observations, and show that dynamic structure in the shock surface at ion scales produces effective scattering and can be responsible for making high Mach number shocks effective sites for electron acceleration.Comment: 26 pages, 12 figure

    The Cosmological Constant is Back

    Get PDF
    A diverse set of observations now compellingly suggest that Universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the wanted value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges---and opportunities---that this poses for particle physics and for extending our understanding of the evolution of the Universe back to the earliest moments.Comment: latex, 8 pages plus one ps figure available as separate compressed uuencoded fil

    Hysteresis phenomenon in deterministic traffic flows

    Full text link
    We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic ``particle-hopping'' traffic flow model being a straightforward generalization to the well known Nagel-Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'') phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the ``jammed'' (or ``liquid'') phase. Between the two critical values each of these phases may take place, which can be interpreted as an ``overcooled gas'' phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the Journal of Statistical Physic

    Optical-NIR spectroscopy of the puzzling gamma-ray source 3FGL 1603.9-4903/PMN J1603-4904 with X-shooter

    Get PDF
    The Fermi/LAT instrument has detected about two thousands Extragalactic High Energy (E > 100 MeV) gamma-ray sources. One of the brightest is 3FGL 1603.9-4903, associated to the radio source PMN J1603-4904. Its nature is not yet clear, it could be either a very peculiar BL Lac or a CSO (Compact Symmetric Object) radio source, considered as the early stage of a radio galaxy. The latter, if confirmed, would be the first detection in gamma-rays for this class of objects. Recently a redshift z=0.18 +/- 0.01 has been claimed on the basis of the detection of a single X-ray line at 5.44 +/- 0.05 keV interpreted as a 6.4 keV (rest frame) fluorescent line. We aim to investigate the nature of 3FGL 1603.9-4903/PMN J1603-4904 using optical to NIR spectroscopy. We observed PMN J1603-4904 with the UV-NIR VLT/X-shooter spectrograph for two hours. We extracted spectra in the VIS and NIR range that we calibrated in flux and corrected for telluric absorption and we systematically searched for absorption and emission features. The source was detected starting from ~6300 Ang down to 24000 Ang with an intensity comparable to the one of its 2MASS counterpart and a mostly featureless spectrum. The continuum lacks absorption features and thus is non-stellar in origin and likely non-thermal. On top of this spectrum we detected three emission lines that we interpret as the Halpha-[NII] complex, the [SII] 6716,6731 doublet and the [SIII] 9530 line, obtaining a redshift estimate of z= 0.2321 +/- 0.0004. The equivalent width of the Halpha-[NII] complex implies that PMN J1603-4904 does not follow the observational definition of BL Lac, the line ratios suggest that a LINER/Seyfert nucleus is powering the emission. This new redshift measurement implies that the X-ray line previously detected should be interpreted as a 6.7 keV line which is very peculiar.Comment: Published in Astronomy and Astrophysic

    PHYCOBILISOMES AND ISOLATED PHYCOBILIPROTEINS. EFFECT OF GLUTARDIALDEHYDE AND BENZOQUINONE ON FLUORESCENCE

    Get PDF
    The fluorescence of the biliproteins C-phycocyanin from Spirulina platensis, B-phycoerythrin from Porphyridium cruentum and of isolated whole P. cruentum phycobilisomes is quenched in the presence of glutardialdehyde (GA) or benzoquinone (BQ). The kinetics of fluorescence decrease thus induced is biphasic. If GA is used as a quencher, the fluorescence can be recovered at 77 K. Contrary to the GA-effect, only a minor recovery takes place with BQ at 77K, thus demonstrating a different mechanism of action of GA and BQ on biliprotein

    Integrated spatial multiplexing of heralded single photon sources

    Full text link
    The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols.Comment: 10 pages, 3 figures, comments welcom
    • 

    corecore