
Lifetime statistics of quantum chaos studied by a multiscale analysis
A. Di Falco, T. F. Krauss, and A. Fratalocchi 
 
Citation: Applied Physics Letters 100, 184101 (2012); doi: 10.1063/1.4711018 
View online: http://dx.doi.org/10.1063/1.4711018 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/100/18?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

138.251.14.57 On: Fri, 10 Jan 2014 09:39:01

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/19588311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2079205716/x01/AIP-PT/APL_ArticleDL_1213/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=A.+Di+Falco&option1=author
http://scitation.aip.org/search?value1=T.+F.+Krauss&option1=author
http://scitation.aip.org/search?value1=A.+Fratalocchi&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4711018
http://scitation.aip.org/content/aip/journal/apl/100/18?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


Lifetime statistics of quantum chaos studied by a multiscale analysis

A. Di Falco,1 T. F. Krauss,1 and A. Fratalocchi2,a)

1School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS,
United Kingdom
2PRIMALIGHT, Faculty of Electrical Engineering, Applied Mathematics and Computational Science,
King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

(Received 25 February 2012; accepted 13 April 2012; published online 30 April 2012)

In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic

resonator when the number of open channels is greater than one. Our design embeds a stadium

billiard into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. We

calculate resonances through a multiscale procedure that combines energy landscape analysis and

wavelet transforms. Experimental data is found to follow the universal predictions arising from

random matrix theory with an excellent level of agreement. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4711018]

In a seminal paper of 1917, Albert Einstein provided a

remarkable insight about the failure of energy quantization

schemes when applied to nonintegrable systems and raised

the question "Does chaos lurk in the smooth, wavelike, quan-
tum world?"1,2 This problem was practically ignored until

1970, when theoretical physicists led by Gutzwiller investi-

gated the implications of classical chaos for semiclassical

quantum systems and founded the research field known as

quantum chaos. Besides quantum mechanics, the problem

posed by Einstein is of great importance due to the large

number of systems that can be treated semiclassically.3

Among them, electromagnetic waves have stirred particular

interest. In electrodynamics, quantum chaos originates from

the isomorphisms between Schrödinger and Maxwell’s equa-

tions in two spatial dimensions and is manifested in resona-

tors whose forms mimic classically chaotic billiards. In these

geometries, semiclassical methods and random matrix theory

(RMT) provide theoretical predictions that have found to

well agree with several experiments, leading not only to fun-

damental discoveries but also to applications in the field of

laser devices.3–9 One of the most fundamental aspects of

quantum chaos lies in the universality of its eigenmodes, first

conjectured by Bohigas, Giannoni, and Schmit in 1984 for

closed systems10 and then theoretically extended to open

media (originally discussed in the context of nuclear physics)

through random matrix theory.11 According to RMT, the

spectral resonances of a quantum chaotic system show uni-

versal probability distributions, which depend only on the

symmetries of the original equation and the number of open

channels N considered.12,13 However, while there exists a

large experimental literature on the study of the position of

each resonance (i.e., the real part of the eigenvalue of an

eigenmode, see Ref. 3 and references therein), experimental

work on the lifetime statistics (i.e., the imaginary part, or

equivalently, the resonance width) is still at the beginning.

The measurement of the lifetimes, in fact, is an extremely

challenging task due to resonances overlapping in the

eigenmodes spectrum. In this field of research, the present

literature consists only of two experiments at microwave

frequencies.14,15 A comparison between RMT and experi-

mentally measured lifetime probability distributions has

been attempted for a system with a single open channel

(N ¼ 1), showing a behavior whose physical origin is still

not understood.14 Besides that, the case N > 1 (where the

form of the statistics is strongly different from the case

N ¼ 1) has never been addressed yet, as well as an experi-

mental analysis at optical wavelengths, which are the ideal

playground to develop applications as well as to study the

interplay of quantum chaos with fundamental physical

effects such as different forms of nonlinear material

responses (see, e.g., Refs. 6 and 9).

In this letter, we study the lifetime statistic of a chaotic

optical microresonator in the case of N > 1. In a series of

pump and probe experiments, we injected a broadband

source signal into a stadium microresonator and collected

the output by a fiber spectrograph. Resonance lifetimes have

then been extracted from the power spectrum by a multiscale

procedure which combines wavelet transforms and energy

landscape analysis.16,17 We performed an experimental cam-

paign on five different samples, and analyzed more than 700

resonances. Experimentally measured statistics were found

to perfectly match the universal predictions of RMT.

Experiments on wave chaos have been traditionally per-

formed in the microwave regime due to possibility of using

large geometries (� mm) and low loss metals acting as mir-

rors. At optical wavelengths, conversely, metals are lossy

and low absorption dielectrics should be employed. How-

ever, a naive implementation of a chaotic billiard with

dielectrics results into large Fresnel losses, and RMT statis-

tics would no longer be universal.18 In order to overcome

this problem ad design, an optical cavity that mimics a

microwave billiard, we resorted to photonic crystals (PhCs)

technology.19,20 In particular, we embedded a fully chaotic

stadium geometry in a two dimensional photonic crystal

made by a triangular lattice of cylindrical air holes in silicon

(Fig. 1). The sample was fabricated on a silicon on insulator

substrate, with a SiO2 buffer layer of 2 lm and a silicon cap-

ping layer of 220 nm. The PhC pattern was written with a

standard lithographic procedure, involving exposure with an

e-beam system, development of the photoresist, anda)URL: www.primalight.org
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transferring of the pattern on to the substrate with reactive

ion etching step (see, e.g., Ref. 21). The confinement in the

transverse direction is guaranteed by total internal reflection,

whereas the PhC cavity ensures light confinement in the

plane. The sample was designed to work with the electric

field parallel to the surface (TE modes). Inside a photonic

crystal, wavelengths k that fall in the PhC gap Dk cannot

propagate due to a zero density of electromagnetic states.19

In such a frequency range, light energy entering into the bil-

liard gets totally reflected by the PhC walls and escapes in

the input and output waveguides.

In order to collect a sufficiently large statistics, we

designed different samples with the same billiard area (of

700 lm2) and diverse filling factor f ¼ r
a, r being the radius

of the single air hole and a the lattice spacing (Fig. 1). By

varying the filling factor in the range f 2 ½0:25; 0:3�, we

guaranteed a photonic bandgap for electromagnetic TE

modes of Dk > 400 nm, which is sufficiently larger than the

bandwidth of the laser source employed for the experiments.

The experimental setup consisted of a polarized CþL band

amplified spontaneous emission source (central wavelength

1575 nm, bandwidth 110 nm), which injected light into a sin-

gle mode fiber that was coupled to the sample by a 60�
aspheric lens, with antireflection coating. Light emerging

from the output channel was then collimated by a 40�
aspheric lens into a second single mode fiber, split between a

photodetector (to monitor the coupling optimization) and an

ANDO optical spectrum analyzer. All spectra were acquired

with a resolution of 10 pm. Figure 2 shows a typical power

density spectrum PðkÞ obtained from a single measurement.

We observe strong clustering effects, with several resonan-

ces overlapping in the spectrum (see Fig. 2(b)). We empha-

size that, due to such overlapping and the impossibility of

measuring the time evolution of the photon’s carrier at opti-

cal frequencies, no standard method of resonances extraction

(such as, e.g., the harmonic inversion employed in Ref. 14)

could be employed. For this reason, we developed an origi-

nal approach that exploits ideas from multiresolution analy-

sis16 and complex landscapes topology.17 More specifically,

we begin by applying a continuous wavelet transform

ðWPÞðf; sÞ to the power density spectrum P,

ðWPÞðf; vÞ ¼
ð1
�1
PðkÞ 1ffiffiffi

v
p w

k� f
v

� �
dk; (1)

v; f being scaling and translation parameters, respectively, and

w the so-called mother wavelet, which is a compact function

in L2ðRÞ possessing a zero mean value and satisfyingÐ1
�1

j~wðf Þj2
jf j df <1 (~w denotes the Fourier transform of w). To

extract Lorentzian-like linewidths out of the spectrum, we

choose the following symmetric wavelet w ¼ ð2� 4t2Þe�t2 ,

which is defined from the second derivative of a Gaussian

function. The integral transform (1), when applied to the

power density spectrum resulting from a measurement, pro-

vides a geometric visualization of the inner structure of the

spectral resonances—given by the regions of high density in

Fig. 3—which change according to the scale v considered. As

v increases, resonances found at smaller scales evolve into

tree-like structures and eventually join together (Fig. 3(b)).

The topology of the surface ðWPÞ encodes the structure of all

the resonances of the system. Isolated resonances, in particu-

lar, are observed due to the missing of any tree structure in

ðWPÞ, while a link between high-density regions is the signa-

ture of the presence of a cluster. We describe clusters and iso-

lated resonances by an uphill landscape analysis17 applied to

the wavelet transform. Figure 4(a) illustrates this analysis

when applied to the portion of the spectrum of Fig. 2(b). In

particular, we employ a series of runners (Fig. 4(a), solid

lines), which evolve along v following the curve of minimum

steepness on the surface ðWPÞ, and nodes (Fig. 4(a), circle

dots) denoting the intersection among different runners. We

geometrically describe tree-like structures among paths of

different runners by building an adjacency matrix A, with

Aij ¼ 1 if the path of runners i and j overlaps, and Aij ¼ 0

otherwise. The matrix A carries the information on both the

structure and the composition of all the clusters of resonances

in the spectrum. In conjunction with the wavelet transform

ðWPÞ, it provides the required knowledge to extract position

and spectral linewidth of the billiard eigenmodes. Isolated

resonances, characterized by Aij ¼ 0 for j 6¼ i, are described

by following the path of the corresponding runner up to the

first maximum in the surface ðWPÞ, which yields the highest

FIG. 1. SEM image of the open stadium billiard realized within a two

dimensional photonic crystal. Insets represent magnified details of the sam-

ple: (top) input waveguide and (bottom) triangular lattice.

FIG. 2. (a) Experimental power density spectrum PðkÞ retrieved for a sam-

ple with f¼ 2.88; (b) enlarged portion (a) for k 2 ½1:546 lm; 1:564 lm�.
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overlap according to the L2 distance defined by Eq. (1). At the

maximum point in the plane ðv; fÞ, the full width half maxi-

mum (FWHM) linewidth dk is
ffiffiffiffiffiffiffiffiffiffiffi
2log2
p

times the waist of the

Gaussian part of the wavelet, and reads dk ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2=2

p
,

while the resonance position k0 is given by k0 ¼ f. In the

presence of resonance clusters, which show nonzero connec-

tions in the adjacency matrix (i.e., Aij 6¼ 0 for j 6¼ i), we found

optimal ðk0; dkÞ by a nonlinear simplex optimization search in

the subspace spanned by the runners path in the plane ðv; fÞ of

the surface ðWPÞ. Stemming from the theoretical parameters

ðk0; dkÞ obtained through the combined analysis on ðWPÞ
and A, we finally apply a global nonlinear least-square optimi-

zation across the entire spectrum for further increasing the fi-

delity of our estimated results. The outcome of this procedure

is quite satisfactory. Figure 4(b) compares a portion of the the-

oretical spectrum reconstructed by the method described

above and the experimental measure. As seen, the experimen-

tal data is barely visible due to an excellent agreement with

the fitted curve obtained through the multiscale analysis. We

highlight that all experimental spectra (not shown here) were

reconstructed with the same degree of precision. Figure 5

reports the distribution of the resonances in the plane ðk0; dkÞ
for the five samples considered in our experiments. The figure

shows a clear separation of the resonance dynamics into two

different regions. A few, isolated short living resonances and

many long living modes with positions are completely random

in ðk0; dkÞ and do not overlap in the plane (Fig. 5(b)), thus

witnessing statistical independence of the acquired data. In

order to compare our results to the corresponding quantum-

mechanical predictions, we begin by expressing the scattering

matrix SðEÞ,14,22 which relates the vector of incoming B and

outgoing A electromagnetic field amplitudes by B¼ S A with

SðEÞ ¼ 1� 2piWðEÞ
†

DðEÞ�1WðEÞ, E playing the role of a

quantum-mechanical energy, W the operator modeling the

coupling with the environment (i.e., the channel space), and

D ¼ E �H0 þ ipWW†

, H0 ¼ r2 þ k2 being the Hamilto-

nian corresponding to the close billiard. Resonances of the

system originate from the poles of the scattering matrix S and,

therefore, from the eigenvalues E ¼ � � ic of H0 � ipWW†

.

The eigenvalues imaginary part c, which corresponds to the

distribution of the resonances width of the open chaotic sys-

tem, can be related to the electromagnetic measured data

ðk0; dkÞ from the relation k2 ¼ x2

c2 ¼ E, and reads c ¼ dk=k3
0

(omitting inessential proportionality constants). In our PhC

geometry, open channels originate inside all the leaky ele-

ments of the structure (i.e., waveguides, surfaces, and PhC

itself due to it finite extension). All these elements are sources

of weakly—and evanescently small—energy leakage outside

the billiard. It is worthwhile stressing that the physical mecha-

nism underlying all losses in our structure is the same (i.e.,

evanescent coupling between the cavity mode and the radia-

tion or guided modes), while absorption is totally negligible

due to the transparency of Si in the infrared region. All open

channels can be, therefore, treated on the same physical basis,

where each of them is weakly coupled to the external environ-

ment. In this condition, the width probability function pðcÞ
reads13,23 pðcÞ ¼

Ðþ1
�1

dk
2p

e�ikcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detj1�ikGj
p ; with G being a N �N

matrix expressing the correlations among the channels. In

general, we do not expect any correlation among losses due to

the fact that they occur in both random directions and uncorre-

lated space regions. We, therefore, can further simplify the

previous equation in the limit, where G is diagonal, with

Gij ¼ dij=g. Straightforward integration yields

pðcÞ ¼ gM

CðMÞ c
M�1e�gc; (2)

with N =2 ¼M and g ¼ ð2MhciÞ�1
. The distribution equa-

tion (2) is universal and uniquely determined by M. This

coincides with the same distribution employed in Ref. 14

to keep into account losses, although derived by means of

another approach. Figure 6 compares the experimentally

measured distribution of c with the theoretical prediction of

RMT with M¼ 5, which produces the best fit (in a least-

square sense) of the experimental data. As seen, an

FIG. 3. (a) and (b) Continuous wavelet transform of the power density spec-

trum PðkÞ of Figs. 2(a) and 2(b), respectively.

FIG. 4. (a) Uphill pathways analysis (runners as solid lines and nodes as

circle markers) of the wavelet transform of Fig. 3(b), reported for reference

as pseudocolor plot; (b) theoretical reconstructed spectrum versus experi-

mental measure.

FIG. 5. (a) and (b) Position k0 and FWHM linewidth dk of chaotic resonan-

ces extracted by the multiscale analysis. (b) A magnified version of (a) in

the region where the resonances exhibit a random behavior. In (a) and (b),

different markers (colors) refer to different filling factors f (see the legend

on the right).
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excellent level of agreement is found (of almost three

orders of magnitude) between theory and experiments. The

sources of losses behave as N ¼ 10 equivalent weakly

channels.

In conclusion, motivated by a question posed by Ein-

stein in the last century, we investigated the universal behav-

ior of quantum systems in the presence of deterministic

chaos. We designed and experimentally characterized pho-

tonic crystal resonators that are fully equivalent to open

quantum billiards. Our experimental results, analyzed within

a theoretical framework that combines ideas from multireso-

lution analysis, unambiguously demonstrate the existence of

universal statistics in the lifetime of quantum chaos. Univer-

sality is a concept of utmost importance in every branch of

physics, and its implications at the quantum scale are funda-

mental not only to add a piece to the puzzle initiated by Ein-

stein’s intuition, but also to give rise to quantum devices that

exploit universal phenomena and operate regardless of their

microscopic details.
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G. P. Bava, Phys. Rev. Lett. 94, 233901 (2005).
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100, 254101 (2008).
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