5,151 research outputs found

    Photosynthesis-controlled calcification in a hypersaline microbial mat

    Get PDF
    We investigated the hypothesis that sulfate reduction rather than oxygenic photosynthesis promotes calcification in a hypersaline microbial mat by increasing the ion concentration product: ICP 5 [Ca2+] X [CO32-]. Pore‐water 3 calcium concentration profiles directly measured with microsensors show that calcium concentration in the photic zone decreased in illuminated mats and increased slightly in dark mats. High pH values in the photic zone of illuminated mats resulted in higher carbonate concentrations (2.25 mmol L-1) than in dark mats (0.75 mmol L-1), although the dissolved inorganic carbon (DIC) pore‐water concentration in the former was much lower (5.9 mmol L-1) than in the latter (9.9 mmol L-1). The pH‐induced rise in carbonate concentration in the light was the main factor influencing the ICP, while changes in Ca-1 concentration played a subsidiary role. Sulfate reduction did not result in a net pH increase in these mats, as rates in the photic zone were comparable between illuminated and dark mats (4 and 5 nmol cm-2 h-1, respectively), and pH increased in illuminated mats but not in dark mats. Calcium carbonate precipitation in the photic zone of these hypersaline mats is primarily controlled by photosynthesisinduced pH and carbonate concentration increases. However, heterotrophic bacteria, including sulfate reducers, play an important complementary role in calcification because they maintain high concentrations of DIC in the mat pore water

    An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field

    Get PDF
    This paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force. When the magnetic field is large, the so-called drift-fluid approximation is obtained. In this limit, the parallel motion relative to the magnetic field direction splits from perpendicular motion and is given implicitly by the constraint of zero total force along the magnetic field lines. In this paper, we provide a well-posed elliptic equation for the parallel velocity which in turn allows us to construct an Asymptotic-Preserving (AP) scheme for the Euler-Lorentz system. This scheme gives rise to both a consistent approximation of the Euler-Lorentz model when epsilon is finite and a consistent approximation of the drift limit when epsilon tends to 0. Above all, it does not require any constraint on the space and time steps related to the small value of epsilon. Numerical results are presented, which confirm the AP character of the scheme and its Asymptotic Stability

    The s-process branching at 185W

    Get PDF
    The neutron capture cross section of the unstable nucleus 185W has been derived from experimental photoactivation data of the inverse reaction 186W(gamma,n)185W. The new result of sigma = (687 +- 110) mbarn confirms the theoretically predicted neutron capture cross section of 185W of sigma = 700 mbarn at kT = 30 keV. A neutron density in the classical s-process of n_n = (3.8 +0.9 -0.8} * 1e8 cm-3 is derived from the new data for the 185W branching. In a stellar s-process model one finds a significant overproduction of the residual s-only nucleus 186Os.Comment: ApJ, in pres

    s-Process Studies In the Light of New Experimental Cross Sections: Distribution of Neutron Fluences and r-Process Residuals

    Get PDF
    A best set of neutron-capture cross sections has been evaluated for the most important s-process isotopes. With this data base, s-process studies have been carried out using the traditional model which assumes a steady neutron flux and an exponential distribution of neutron irradiations. The calculated sigma-N curve is in excellent agreement with the empirical sigma-N-values of pure s-process nuclei. Simultaneously, good agreement is found between the difference of solar and s-process abundances and the abundances of pure r-process nuclei. The abundance pattern of the iron group elements where s-process results complement the abundances obtained from explosive nuclear burning is discussed. The results obtained from the traditional s-process model such as seed abundances, mean neutron irradiations, or neutron densities are compared to recent stellar model calculations which assume the He-burning shells of red giant stars as the site for the s-process

    Dependence of direct neutron capture on nuclear-structure models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We calculate direct neutron capture on the even-even isotopes 124145^{124-145}Sn and 208238^{208-238}Pb with energy levels, masses, and nuclear density distributions taken from different nuclear-structure models. The utilized structure models are a Hartree-Fock-Bogoliubov model, a relativistic mean field theory, and a macroscopic-microscopic model based on the finite-range droplet model and a folded-Yukawa single-particle potential. Due to the differences in the resulting neutron separation and level energies, the investigated models yield capture cross sections sometimes differing by orders of magnitude. This may also lead to differences in the predicted astrophysical r-process paths. Astrophysical implications are discussed.Comment: 25 pages including 12 figures, RevTeX, to appear in Phys. Rev.
    corecore