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I. INTRODUCTION AND SUMMARY

The objective of this program is to develop improved materials for

Gunn-effect devices.	 Most of the effort during the past year was devoted to

investigations of the chemical vapor deposition technique for GaAs. 	 Characteri-8	 P	 P	 9

zation of the materials included measurements of Hall effect and resistivity

at 300°K and at 77°K for specimens deposited on semi-insulating substrates.

-x The former data, together with some special measurements covering a continuous

range of temperatures, yielded information on deep-lying donor levels, whine

both sets of data permitted determination of the electron mobilities.	 Approxi-

mately two dozen epitaxial layers of GaAs, deposited on n+ substrates placed

in the reaction tube adjacent to the semi-insulating substrates, were supplied

' to ERC for device studies.

Effort was also devoted to the preparation of Ga In 	 Sb mixed
1-xx

crystals, with emphasis on the region where x ranged from 0.4 to 0.5.

Although initial efforts yielded polycrystalline material, it was found that

specimens shipped to ERC exhibited surprising low thresholds for Gunn

oscillations.

The research on vapor deposition of GaAs provided considerable

information concerning the influence of a number of preparation parameters on

the character of the deposit, including the occurrence of significant auto-

doping from Te-doped substrates. Associated with this process, appears to be
rr

the occurrence of abnormally large ratios of carrier density at room tempera-

ture to that at 77°K, indicative either of the existence of deep-lying donor
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levels or of concentration gradients. In regard to the Ga xInl-xSb, a new

technique was devised, which offers promise of providing reasonably homogeneous

crystals. Initial effort was devoted to a careful programming of the tempera-

ture gradients in the system.

II. EXPERIMENTAL DETAILS

Epitaxial GaAs--Chemical Vapor Deposition

The chemical vapor deposition of GaAs was accomplished using the

Ga-AsC13-H 
2  
system of reagents. The chemical reactions presumed to occur at

the Ga source and the substrate, respectively, are as follows:

3Ga (1) + AsC13 (v) - 3GaC1 (v) + 1/4 As4 (v)

and	 3GaC1(v) + 1/2 As 
4(v)' 

2GaAs (s) + GaC13(v)'

During the process of arseniding or saturating the Ga source, another

important reaction which occurs is:

2AsC13(v) + 3H 
2(v)-+ 

6HC1 (v) + 1/2 As 4(v)*

After saturation, a thin skin of GaAs forms on the surface of the

gallium. Hence, another possible reaction is:

GaAs 
(S)

+ HU (v) , GaC1 (v) + 1/4 As 
4(v)+ 

1/2 
H2(v).
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Apparatus and Materials

The reactor and furnace system employed was essentially that described

in the Semiannual Technical Report No. 1, October 14, 1968. The only major

modifications were: (1) the substitution of Ace teflon valves with viton "0"

rings for the teflon stopcocks used previously and (2) the use of a constant

temperature bath around the AsC1 3 bubbler to control the AsC1 3/H2 ratio.

This bath consisted of a two chamber jacket, a heater-controller unit, and

a conventional electric water cooler. The AsC1 3 bubbler was placed in the inner

chamber which was filled with an ethylene glycol solution. The heater-

controller unit was placed in the outer chamber through which an identical

ethylene glycol solution was circulated. Temperature excursions on either

side of the control point were typically 4-5°C in the outer chamber, but less

than 0 X C in the inner chamber. Thus, the AsC1 3 temperature fluctuations

could be held within 0 X C.

All reactant materials and substrates were obtained from commercial
j,

sources. They included:

Gallium-Alusuisse	 99.9999%
Y

`	 AsC13 - ASARCO Lot C-157	 99.999+

C-161	 of

Ohio Semitronics	 99.999

Baker & Adamson	 99.0

Hydrogen - Airco	 99.95

Substrates - Monsanto Cr-doped

"	 Te-doped

Is

l
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Procedure

Substrates used in this program were (1) semi-insulating Cr-doped

for Hall measurements, and (2) low-resistivity Si- or Te-doped for n on n+

structures. These substrates were prepared for use by hand lapping on 4/0

silicon carbide paper and degreasing. They were then etched for 25 minutes

in 5H2S t1HZ 
2 
M20 rinsed in high purity (> 15 x 10 6 ohm-cm) deionized water,

and soaked for 30 minuteb in a boiling solution of the sodium salt of EDTA.

The substrates were then rinsed twice in room temperature deionized water, given

a final rinse in boiling deionized water, loaded onto the seed holder and

inserted in the reactor under a H 2 flow of 100 cc/min. The system was then

purged for approximately 2 hrs with purifie6 H2.

In a typical deposition procedure, the furnaces were heated up with

only hydrogen flowing. When the desired temperatures were reached (800-900°C

for the gallium source and 725-735°C for the deposition zone) the hydrogen

was passed through the AsC13 , which was held at a fixed temperature, and over

the molten gallium.

The arsenic was completely absorbed by the gallium as indicated

by the appearance of only gallium and GaC1 3 droplets on the reactor walls down-

stream of the furnace end. Saturation of the melt was distinctly signalled

by the appearance of a continuous, blue-metallic ring on the reactor walls

just at the furnace end; the time required for melt saturation was generally

2-1/2 hours for a 10-gram gallium charge. At this time the AsC1 3 was diverted

from the Ga boat and directed to the etch tube. The substrate was inserted

to a preplanned position and the deposition-furnace temperature was increased

to give a substrate temperature greater than 800°C. After 10 minutes of vapor
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etching in situ, the AsC13 was diverted over the Ga, the substrate was pulled

back to the deposition position, and the deposition furnace was returned to

its original temperature setting. Deposition was continued as long as desired,

and was terminated by withdrawing the substrate from the furnace.

GaxIn (1-x) Sb--Bulk Crystal Growth

Ingots of GaXIn (1-X) Sb were prepared by two techniques: the single

pass zone leveling method described by Dismukes and Ekstrom (1) , and a solute

diffusion technique conceived by J. F. Miller of this laboratory. In the

former method, chilled castings of compositions Ga . 11 In . 89Sb and Ga . 40 In . 60Sb,

respectively, were prepared from high purity Ga, Sb, and InSb. A one•-i- A long

section of the Ga
.11 

In . 89Sb and a 6-inch long section of the Ga . 40 In . 60Sb

castings were placed end to end in a silica boat and inserted intc a silica

reaction tube. A single pass was made with a 1-inch molten zone at a travel

rate of 0.12 inch per hour. The direction of zone travel was such that the

Ga . 11 In . 89Sb section was the first to melt. The complete pass took 72 hours.

In the solute diffusion method, an indium-gallium alloy of the desired

composition, say, In
0.6

-Ga 0.4' along with a quantity of antimony, contained

in a sealed silica tube of the type shown in Fig. 1 is placed in a furnace in

a temperature profile such as is indicated in the figure. In such a profile,

antimony will slowly distill or sublime and will enter the indium-gallium

solution by vapor transport at a rate that can be controlled by controlling

the antimony temperature, T C . If the transport rate is sufficiently low,

(1) J. P. Dismukes and L. Ekstrom, Trans. Met. Soc. AIMS 223, 672 (1965).

Ir
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FIGURE I. APPARATUS AND TEMPERATURE PROFILE FOR CRYSTAL GROWTH
BY SOLUTE DIFFUSION
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when the concentration of antimony in the InX 
Gal-x 

solution has reached the

concentration corresponding to saturation at the lowest solution temperature,

T 
L, 

InxGal-xSb will continue to form at the lowest-temperature site in the

solution until all of the antimony has sublimed.

Four rates are of concern in the overall process:

r. - the rate of transport of antimony vapor to the In-Ga

solution,

r 2 - the rate of solution of antimony in the In-Ga at the

liquid surface,

r3 - the rate of diffusion of antimony through the In-Ga

solution,

r4 - the rate o f crystallization of InxGal-xSb at the low-

temperature site.

If r  is kept low so that r  < r2 = r3 m r4 , saturation of the In-Ga

solution will never be catastrophically exceeded, and the composition of

crystallizing InxGal-xSb (equilibrium) solid will remain constant (corresponding

to the initial InX Gal-x composition) and the alloy will be of uniform

composition. The rate of deposition alone will change as the solid-liquid

interface moves into the higher temperature region.

Since no temperature or mechanical-movement program is involved,

minimum difficulty should be encountered in maintaining a steady-state process

and avoiding solvent inclusions. With modified experimental procedure,

seeding of growth is possible.
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Electrical Measurements

Specimens of epitaxial GaAs and bulk GaxInl-xSb prepared under the

present contract were characterized by Hall coefficient and resistivity measure-

ments. Data for the epitaxial GaAs samples were obtained via the Van der Pauw

technique from samples for which the epitaxial layers were grown on Cr-doped

semi.-insulating GaAs substrates. Data for the bulk Ga xInl-xSb specimens were

obtained on rectangular parallelepipeds. In all cases a magnetic field of 8770

gauss was used for the Hall effect measurements. Conventional d.c. potentiometric

techniques were employed, using a constant current source in conjunction with

a
either a Leeds and Northrup K-3 potentiometer or, for high resistance samples,

a Keithley model 610 electrometer. Measurements were made routinely at

300 and 77°K. In addition, measurements as a function of temperature were

obtained on selected samples of GaAs in order to check for the presence of

deep levels,and on selected samples of Ga xInl-xSb in order to determine the

band gap and from that, the alloy composition.

III. EXPERIMENTAL RESULTS

Epitaxial GaAs

The pertinent electrical properties of GaAs epitaxial layers

prepared by the Ga/AsC1 3 reagent system were found to depend not only on

overall system cleanliness and purity of reagents, but also on the unused

fraction of AsC13 remaining in the bubbler (bubbler fraction),the mole fraction

"dw.
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of AsC1 3 present in the flow stream, and the temperature of the Ga source.

In addition, when layers were deposited onto low resistivity and semi-

insula^ing substrates simultaneously, the relative locations of the two types

of substrates on the reactor and the particular dopant in the low resistivity

substrate influenced the purity and uniformity of the epitaxial layers.

The effects of bubbler fraction and AsC13 source on the purity of

GaAs layers are demonstrated in Figure 2, which shows carrier concentration versus

bubbler fraction for AsC1 3 charges obtained from various sources. In each

case the initial charge of AsC1 3 was 50 gm, the Ga source temperature was 850°C,

and the AsC13 bubbler was at room temperature, corresponding to an AsC13/H2

ratio of approximately 1 mole percent. In the case of Asarco Lot C-157

AsC13 , the carrier concentration was initially on the order of 10 17cm 3,

but decreased monotonically with decreasing bubbler fraction, the resulting

layers becoming p-type after 30-35% of the total charge had been exhausted.

The Baker and Adamson reagent grade AsC13 behaved in a totally different

manner, however. In this case the carrier concentration increased gradually

from an initial value of 4.4 x 10
153

 with decreasing bubbler fraction.

Since the pertinent deposition parameters were the same for all the data

presented in Figure 2, it appears that the difference between the Baker and

Adamson and the Asarco charges may be attributed to variations in the

concentration and species of impurities in the AsC13 . Thatis, it appears

that in the Asarco AsC13 , donor impurities are present primarily in a highly

volatile form. With successive depositions, corresponding to decreasing bubbler

fraction, the concentration of these donors is cepleted until it is less than

the concentration of background acceptors,at which point p-type layers result.

R
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Conversely, in the case of Baker and Adamson AsC1 3 , the donors are primarily

present in the form of a relatively nonvolatile species, so that their con-

centration increases with decreasing bubbler fraction.

The inability to obtain device quality material from apparently

pure AsC13 with the deposition conditions described in connection with Figure

2 led to a series of experiments on the effects of gallium source temperature

and AsC1 3/H2 ratio on the electrical properties of epitaxial layers. The

results of these experiments appear in Tables I and II.

The depositions listed in Table I were obtained with the remaining

two thirds of a 50 gm charge of Asarco Lot C-157 AsC13 . The deposition just

prior to the first entry in Table I, was made under the conditions of

Figure 2 (TGa = 850°C, AsC13/H2 >1 mole %), and was p-type. Upon increasing

the gallium source temperature to 900°C and decreasing the bubbler temperature

to 5°C, the n-type layer 26645-44-25 resulted. Continued operation with T
Ga =

900°C and AsC13/H2 < 0.64% yielded n-type layers with acceptable values of

carrier concentration and electron mobility at a bubbler fraction as low as

0.42 (deposition 73-25). Upon decreasing T Ga to 800°C with AsC13/H2 = 0.64,

the p-type sample 75-31 resulted. A subsequent decrease of AsC1 3/H2 to 0.44%

while maintaining TGa at 800°C again resulted in an n-type layer (80-26).
	 F

Analogous results were obtained with fresh 50 gm charges of Asarco

Lot C-161 AsC1 3 as shown in Table II. In this case, however, initial saturation

of the Ga source occurred at 800°C. Seven consecutive depositions (26645-83-3

to 97-25) were made with TGa = 800°C, the first four at an AsC1 3/H2 ratio

of 0.64 mole percent and last three at an AsC1 3/H2 ratio of 0.77 mole percent.

Increasing TGa to 900°C, resulted in electron concentrations of 3.53 x 10 16 and



E

. L..

12

TABLE I. EFFECT OF GROWTH CONDITIONS ON GaAs
LAYERS PREPARED FROM ASARCO LOT C-157
AsC13

TGa AsCl/H2 n(cm 3 ) u(cm2 /v-sec)
Bubbler

Deposition (°C) (mole %) 300°K 77 °K 300°K 77°K Fraction

26645-44-25 900 0.45 7.77 x 1015 5.39 x 1015 4880 23,200 0.68

46-27 900 0.47 4.18 x 1015 3.07 x 1015 5330 31,300 0.66

48-26 900 0.49 5.30 x 1015 3.81 x 1015 5320 30,200 0.64

50-26 900 0.53 1.66 x 1015 1.38 x 1015 6240 47,700 0.61

65-26 900 0.64 2.03 x 1015 1.45 x 1015 4790 36,300 0.52

69-27 900 0.64 1.95 x 1015 1.44 x 1015 5020 41,300 0.48

73-25 900 0.64 5.34 x 1015 3.51 x 1015 4050 23,600 0.42

75-31 800 0.64 p-type 0.40

80-26 800 0.44 2.08 x 1015 1.86 x 1015 5630 30,300 0.39
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TABLE II. EFFECT OF GROWTH CONDITIONS ON GaAs LAYERS
PREPARED FROM ASARCO LOT C-161 AsC13

TGa AsCl/H2 n(cm 3 ) )J(cm2/v-sec)
Bubbler

Deposition (°C) (mole %) 300 °K 77°K 300°K 77°K Fraction

26645-83-3 800 0.64 6.73 x 1015 5.04 x 10 15 5170 23,700 1

85-26 800 0.64 4.63 x 1015 3.10 x 1015 4220 23,200 0.97

89-26 800 0.64 4.78 x 1015 3.26 x 1015 4740 27,100 0.94

91-26 800 0.64 5.21 x 1015 3.61 x 1015 5060 34,200 0.92

93-25 800 0.77 5.63 x 1015 4.19 x 1015 5500 31,900 0.90

95-25 800 0.77 1.81 x 1015 1.62 x 1015 6380 50,900 0.89

97-25 800 0.77 2.62 x 1015 4900 0.87

99-26 900 0.77 3.53 x 1016 3680 0.84

26681-5-25 900 1.5 1.48 x 1016 4340 0.80

7-28 823 1.05 High resistivity 0.79

9-26 823 0.77 High resistivity 0.77

16-25 850 0.77 2.41 x 1016 3700 0.64

33-1 810 p-type 0.55

37-25 850 1.39 x 1016 4760 0.52

39-25 850 1.04 x 1016 3400 0.50

41-28 840 0.77 8.70 x 1015 4220 0.48

43-26 825 0.77 1.19 x 1015 1.00 x 1015 6100 44,700 0.47

45-27 825 0.77 1.21 x 1015 1.01 x 1015 6280 48,800 0.45

49-26 825 0.77 6.67 x 1014 7.31 x 1014 7000 52,100 0.42

53-26 825 0.77 p-type 0.39

55-26 825 0.56 5.68 x 1014 5.84 x 10 14 3450 21,100 0.35

a^
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1.48 x 1016 at AsC1 3/H2 ratios of 0.77 and 1.5%, respectively (depositions

99-26 and 26681-5-25). During the series of depositions yielding layers

26681-7-28 through 39-25, the Ga temperature was cycled to yield high and low

resistivity n-type layers, and to change the conductivity type from n to p

and back to n. Depositions 39-25 through 55-26 reveal, respectively, the

following behavior: (a) the reduction in carrier concentration achieved by

programming the gallium temperature from 850 to 825°C with the AsC1 3/H2 ratio

fixed at 0.77 percent (39-25 through 43-26); (b) the conversion to p-type at a

bubbler fraction of 0.39 (deposition 53-26); and (c) the conversion back to

n-type by lowering the AsC13/H2 ratio from 0.77 to 0.56 percent (deposition 55-26).

Based on the effects of TGa and AsC13/H2 ratio in film properties

as evidenced by the data in Table II, growth conditions were chosen to yield

device quality layers and applied to the series of depositions presented in

Table III. The results presented in Table III indicate that by appropriate

initial choice and suitable adjustment of growth parameters, a high yield of

device quality material can be obtained.

In addition to the effects of reagent purity and deposition parameters,

an auto-doping of layers was observed when Te or Si doped low resistivity

substrates were employed. In the case of Si-doped substrates this effect was

only noticeable for samples located downstream from the doped substrate. For

example, depositions 68-26 T,B, and 70-27 F,R, employed 4 substrates, 2 each of

the semi-insulati,.,, and Si-doped variety. In the case of deposition 68-26,

layers were grown simultaneously on four substrates so arranged that one set

of two substrates (1 Cr-doped + 1 Si-doped) was located immediately above the
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TABLE III. ELECTRICAL PROPERTIES OF GaAs EPITAXIAL LAYERS

TGa AsCl/H2 n(cm3 ) u(cm2/v-sec)
Bubbler

Deposition (°C) (mole %) 300°K 77°K 300°K 77°K Fraction

26681-60-27 810 0.77 4.01 x 1015 3.31 x 1015 6120 30,500 1

62-27 810 0.77 1.14 x 1015 9.25 x 1014 5700 45,700 0.98

64-27 810 0.77 3.36 x 1015 2.12 x 10 15 5140 52,300 0.97

66-26 800 0.77 High resistivity 0.93

68-26T 825 0.77 2.68 x 1014 3.93 x 1014 6630 42,900 0.76

68-26B 3.14 x 1014 3.57 x 10 14 5530 37,400

70-27F 825 0.77 9.23 x 1013 1.70 x 1014 5350 35,600 0.74

78-27R 825 0.77 2.67 x 1015 1.84 x 1018 4850 36,200

73-3 825 0.76 1.63 x 1014 2.37 x 1014 6560 60,400 0.73

75-28 825 0.57 4.08 x 1015 2.92 x 1015 5130 40,200 0.71

77-27 825 0.65 8.11 x 1014 8.20 x 1014 5150 41,400 0.68

81-26 825 0.57 1.38 x 1015 1.21 x 1015 5530 51,300 0.65

86-25 825 0.57 4.46 x 1014 4.73 x 1014 5470 45,700 0.61
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second set. Thus all four substrates were in the same portion of the furnace

profile. The data of Table III indicate that little autodoping from the Si-

doped substrate occurred. In the case of deposition 70-27, one set of substrates

was located upstream from the other. In this case, doping of the layer is

evident for the downstream substrate 70-27R.

When Te-doped substrates were employed, significant auto doping

occurred irrespective of the relative positions of the Te- and Cr-doped sub-

strates. Measured carrier concentrations of 1-2 x 1016 
cm3 

were invariably

observed when Te-doped substrates were present in the reactor. In addition,

whenever auto-doping was known to occur from either Si- or Te-doped substrates,

the resulting layers exhibited an anomalous temperature dependence of the Hall

coefficient RH. These effects are summarized in Table IV.

Examination of the data in Table IV indicates that Te auto doping

occurred during depositions 52-27 and 54-28 and that Si auto doping occurred

during depositions 47-26 and 51-26. It may also be observed that the room

temperature mobility is anomalously low and the ratio R H77/%300 is anomalously

high for the auto-doped samples. It is possible that the reduction in room

temperature mobility and.the .increase in apparent freezeout at low temperatures

is due to the presence of a deeper-lying level associated with the normally

hydrogenic Si and Te donors, e.g., an impurity complex of Si or Te with lattice

defects, oxygen, Ga or As. However, since Te doping during vapor deposition

has been successfully employed elsewhere to produce device quality GaAs, it seems

more likely that the observed effects result from an inhomogeneous distribution

s.
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TABLE IV. EFFECT OF SUBSTRATE DOPANT ON GaAs LAYERS

Substrate R p u
cm2 /v-secDeposition Dopant AsC13 cm3/coul ohm-cm T°K RH77/RH300

26645-50-26 -- Asarco -3770 0.604 6,240 300 1.20
C-157 -4520 0.0948 47,700 77

52-27 (1) Te " - 426 0.135 3,170 300 1.80
- 767 0.0597 12,800 77

54-28 (l) Te " - 331 0.125 2,650 300 1.85
- 613 0.0574 10,700 77 -

65-26 -- " -3080 0.643 4,790 300 1.40
-4320 0.119 36,300 77

26881-43-26 -- Asarco -5250 0.859 6,100 300 1.18
C-161 -6220 0.319 44,200 77

45-27 (2) Si -5150 0.820 6,280 300 1.20
-6200 0.127 48,800 77

47-26 (3) Si -1090 0.266 4,100 300 2.18
-2380 0.0545 43,700 77

49-26 (2) Si -9370 1.34 7,000 300 0.91
-8550 0.164 52,100 77

51-26 (3) Si -1930 0.432 4,600 300 1.65	 -
-3270 0.0883 37,000 77

(1) Te and Cr doped substrates side by side

(2) Ri and Cr doped substrates side by side

(3) Si doped substrate upstream.
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of the dopant in the auto-doped layers. Reid et al. 
(2) 

employed Schottky

capacitance measurements to investigate Te auto doping and verified the existence

of nonuniform donor distributions in the auto doped layers.

Bulk Gaxlnl-xSb

Zone Leveling

As discussed previously, two methods were employed to produce bulk

f	 ingots of GaxInl-xSb. Since the solute diffusion method is still in the

 exploratory stage, only the single pass method described by Dismukes and

Ekstrom (1) was responsible for the samples suitable for electrical characteriza-

tion. The room temperature electrical properties of selected samples taken

from various portions of an ingot prepared by the single pass method are listed

in Table V.

TABLE V.	 VARIATION OF ELECTRICAL PROPERTIES OF
c Gax	 1-x

In	 Sb WITH ALLOY COMPOSITION

3
RH P	 N/pl

2 Uej
Il/ Alloy

Sample	 cm /coul ohm-cm	 em /v-sec cm Composition

A - 628 0.0117	 53,700 9.95 x 1015 Ga.15In.85Sb

B -1790 0 . 144	 12 , 400 3.49 x 1015 Ga,41In.59Sb

C -3460 O.'+13	 8,400 1.80 x 1015 Ga,4In.5Sb

D + 610 1 . 52	 400 1.02 x 1016 Ga.68In^32Sb

(2) F. J. Reid and L. B. Robinson, in "Gallium Arsenide" (Prot. 2nd Intern.
Symposium, Dallas, Texas, 1968)_,p. 59.	 Inst. Phys. and Phys. Soc.,
London, 1969.
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Alloy compositions were determined by x-rey emission spectroscopy.

For Samples A and C, detailed measurements of the ,electrical properties were

obtained as a function of temperature as shown in Figures 3 and 4. These data

in the intrinsic region were used to estimate the 0 °K energy gap Eg . The

resulting values of E  were then compared with the data of Woolley and Gillette (3)

to obtain an independent estimate of alloy composition. The agreement between

these values and those obtained by x-ray emission were within the cccuracy

(+ 5%) of the latter method.

For .large In content as in Sample A, Table V and Fig. 3, material was

n-type at both 77 and 300 °K, and intrinsic conduction dominated at room tempera-

tune. Nor larger Ga contents (slices B and C Table V and Figure 4), the samples

were p-type in the extrinsic region, the Hall coefficient changing sign between

77 and 300 °K. In this respect the alloy composition Ga . 68 In . 31Sb resembled undoped

GaSb.

Additional x-ray emission studies on slices taken from that portion

of the ingot defined by Slices B and C indicated that a region of uniform

composition (Ga
.41

 In. 59Sb) extended over the center third of the ingot. Composi-

tion profiles, obtained by x-ray emission, indicated that the slices were at

least macroacop! --ally uniform.

Solute Diffusion

In perfecting a new crystal growth technique, it is necessary to

determine optimum values of temperature and temperature gradients in the

critical regions (see Fig. 1). Init!al investigations were made with tempera-

tures, TH, in the hot zone of 550 and 600%. The temperature gradient in the growth

(3) J. C. Woolley and C. M. Cillette, J. Phya. Chem. Solids 17, 34 (1960).

f
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zone was approximately 30°C per inch, and a melt composition In 0.6Ga0.4 was

employed. Under these conditions, it was found that the antimony vapor pressure

was too low to form a coherent ingot in a period as long as three weeks. By

raising T  to 750°C, a solid ingot was formed in approximately four days. The

ingot, however, was polycrystalline and contained solvent (Ga-In) inclusions.

Inasmuch as the inclusions were large in the first-to-form portion of the ingot,

it appears that the rate of transport of antimony had been too high in the initial

portion of the run. Presence of small metal inclusions in the last-to-form

portion of the ingot is believed to be indicative of constitutional supercooling.

A growth run with T  at 650°C was successful in decreasing the size and

density of inclusions but not in their complete elimination. Clearly, further

refinements of this crystal growth technique are required. The results to date

have been encouraging, however, and it is felt that through modification of

conditions to permit greater flexibility of control over T H, and to permit programming

of this parameter from an initial low value to a selected steady-state value, the

technique will yield improved crystals.

IV. CONCLUSIONS AND RECOMENDATIONS

The results obtained in the chemical vapor deposition of GaAs with the

Ga/AsC1 3 reagent scheme demonstrate the importance of adequate control of both

the Ga source temperature and the AsC1 3/H2 ratio in obtaining high mobility,

low carrier concentration GaAs. The variations achieved in both carrier con-

centration and conductivity type suggest that by programming the Ga or AsC13

bubbler temperatures during growth, it may be feasible to produce layers with

controlled concentration gradients or p-n junctions without the use of an

3

s
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external source of dopants. The mechanisms responsible for the observed

effects are not clearly understood, however. This suggests that although a

number of laboratories are successfully producing high quality GaAs for device

applications, a fundamental investigation of the Ga/AsC1 3 system of vapor growth

is needed, especially as regards the thermodynamics and kinetics of the process.

The results obtained with GaxInl alloys are-xSb encouraging from

several standpoints. 	 The fact that bulk specimens of the alloy showed

microwave oscillations at reduced threshold voltage (4) in spite of their lack

=AL- of crystalline perfection and uniformity establishes this material as a prime

candidate for Gunn-type oscillators. If the development of the solute diffusion

method of crystal growth initiated during this contract affords the opportunity

to produce GaxInl-xSb specimens of superior perfection and homogeneity, then

it should be possible to ascertain the true device potential of the alloy

system. In addition, the preparation technique may have application in other

hard-to-prepare alloy systems. It is therefore recommended that development

y of the solute diffusion technique of crystal growth be actively pursued,

v	 particularly with respect to the preparation of GaxInl-xSb.

(4) W. D. Straub, private communication.
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