49 research outputs found

    Characterization of Nkx6-2-Derived Neocortical Interneuron Lineages

    Get PDF
    Ventral telencephalic progenitors expressing the homeodomain transcription factor Nkx6-2 have been shown to give rise to a multitude of cortical interneuron subtypes usually associated with origin in either the medial ganglionic eminence or the caudal ganglionic eminence. The function of Nkx6-2 in directing the fate of those progenitors has, however, not been thoroughly analyzed. We used a combination of genetic inducible fate mapping and in vivo loss-of-function to analyze the requirement of Nkx6-2 in determining the fate of cortical interneurons. We have found that interneuron subtypes are born with a characteristic temporal pattern. Furthermore, we extend the characterization of interneurons from the Nkx6-2 lineage through the application of electrophysiological methods. Analysis of these populations in Nkx6-2 null mice suggests that there is a small and partially penetrant loss of delayed non-fast spiking somatostatin/calretinin double positive cortical interneurons in the absence of Nkx6-2 gene function

    Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa

    Get PDF
    BackgroundThe burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children.MethodsA total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome sequenced, and the resulting data was used to place these Nigerian isolates into a worldwide context based on their phylogeny and carriage of molecular determinants of antibiotic resistance.ResultsSeveral distinct S. Typhi genotypes were identified in Nigeria that were related to other clusters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expanding S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances in Asia and in east, central and southern Africa, was not detected in this study. However, antimicrobial resistance was common amongst the Nigerian isolates and was associated with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi.ConclusionsThese data indicate that typhoid in Nigeria was established through multiple independent introductions into the country, with evidence of regional spread. MDR typhoid appears to be evolving independently of the haplotype H58 found in other typhoid endemic countries. This study highlights an urgent need for routine surveillance to monitor the epidemiology of typhoid and evolution of antimicrobial resistance within the bacterial population as a means to facilitate public health interventions to reduce the substantial morbidity and mortality of typhoid

    Micro-connectomics: probing the organization of neuronal networks at the cellular scale.

    Get PDF
    Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group

    Global diversity and antimicrobial resistance of typhoid fever pathogens : insights from a meta-analysis of 13,000 Salmonella Typhi genomes

    Get PDF
    DATA AVAILABILITY : All data analysed during this study are publicly accessible. Raw Illumina sequence reads have been submitted to the European Nucleotide Archive (ENA), and individual sequence accession numbers are listed in Supplementary file 2. The full set of n=13,000 genome assemblies generated for this study are available for download from FigShare: https://doi.org/10.26180/21431883. All assemblies of suitable quality (n=12,849) are included as public data in the online platform Pathogenwatch (https://pathogen.watch). The data are organised into collections, which each comprise a neighbour-joining phylogeny annotated with metadata, genotype, AMR determinants, and a linked map. Each contributing study has its own collection, browsable at https://pathogen.watch/collections/all?organismId= 90370. In addition, we have provided three large collections, each representing roughly a third of the total dataset presented in this study: Typhi 4.3.1.1 (https://pathogen.watch/collection/ 2b7mp173dd57-clade-4311), Typhi lineage 4 (excluding 4.3.1.1) (https://pathogen.watch/collection/ wgn6bp1c8bh6-clade-4-excluding-4311), and Typhi lineages 0-3 (https://pathogen.watch/collection/ 9o4bpn0418n3-clades-0-1-2-and-3). In addition, users can browse the full set of Typhi genomes in Pathogenwatch and select subsets of interest (e.g. by country, genotype, and/or resistance) to generate a collection including neighbour-joining tree for interactive exploration.SUPPLEMENTARY FILES : Available at https://elifesciences.org/articles/85867/figures#content. SUPPLEMENTARY FILE 1. Details of local ethical approvals provided for studies that were unpublished at the time of contributing data to this consortium project. Most data are now published, and the citations for the original studies are provided here. National surveillance programs in Chile (Maes et al., 2022), Colombia (Guevara et al., 2021), France, New Zealand, and Nigeria (Ikhimiukor et al., 2022b) were exempt from local ethical approvals as these countries allow sharing of non-identifiable pathogen sequence data for surveillance purposes. The US CDC Internal Review Board confirmed their approval was not required for use in this project (#NCEZID-ARLT- 10/ 20/21-fa687). SUPPLEMENTARY FILE 2. Line list of 13,000 genomes included in the study. SUPPLEMENTARY FILE 3. Source information recorded for genomes included in the study. ^Indicates cases included in the definition of ‘assumed acute illness’. SUPPLEMENTARY FILE 4. Summary of genomes by country. SUPPLEMENTARY FILE 5. Genotype frequencies per region (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 6. Genotype frequencies per country (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 7. Antimicrobial resistance (AMR) frequencies per region (N, %, 95% confidence interval; aggregated 2010–2020). SUPPLEMENTARY FILE 8. Antimicrobial resistance (AMR) frequencies per country (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 9. Laboratory code master list. Three letter laboratory codes assigned by the consortium.BACKGROUND : The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). METHODS : This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. RESULTS : Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal ‘sentinel’ surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. CONCLUSIONS : The consortium’s aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies.Fellowships from the European Union (funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council.https://elifesciences.org/am2024Medical MicrobiologySDG-03:Good heatlh and well-bein

    Draft Genome Sequences of Four <i>Citrobacter</i> Isolates Recovered from Wild Australian Shorebirds

    No full text
    Citrobacter is a ubiquitous bacterial genus whose members inhabit a variety of niches. Some species are clinically important for both antimicrobial resistance (AMR) carriage and as the cause of nosocomial infections. Surveillance of Citrobacter species in the environment can provide indicators of the spread of AMR genes outside clinical spaces. In this study, we present draft genome sequences of four Citrobacter isolates obtained from three species of wild Australian shorebirds. </jats:p

    Salmonella enterica Serovar Hvittingfoss in Bar-Tailed Godwits (Limosa lapponica) from Roebuck Bay, Northwestern Australia

    Full text link
    Salmonella is a zoonotic pathogen that causes gastroenteritis and other disease presentations in both humans and animals. Serovars of S. enterica commonly cause foodborne disease in Australia and globally. In 2016-2017, S . Hvittingfoss was responsible for an outbreak that resulted in 110 clinically confirmed human cases throughout Australia. The origin of the contamination that led to the outbreak was never definitively established. Here, we identify a migratory shorebird, the bar-tailed godwit, as an animal reservoir of S . Hvittingfoss. These birds were sampled in northwestern Australia during their nonbreeding period. The presence of a genetically similar S . Hvittingfoss strain circulating in a wild bird population, 2 years after the 2016-2017 outbreak and ∼1,500 km from the suspected source of the outbreak, demonstrates a potentially unidentified environmental reservoir of S . Hvittingfoss. While the birds cannot be implicated in the outbreak that occurred 2 years prior, this study does demonstrate the potential role for wild birds in the transmission of this important foodborne pathogen. </jats:p
    corecore