6,512 research outputs found
METHOTREXATE ACTION IN RHEUMATOID ARTHRITIS: STIMULATION OF CYTOKINE INHIBITOR AND INHIBITION OF CHEMOKINE PRODUCTION BY PERIPHERAL BLOOD MONONUCLEAR CELLS
This open label study examines whether methotrexate (MTX) treatment modulates ex vivo synthesis of interleukin-1 receptor antagonist (IL-lra), soluble tumour necrosis factor receptors(sTNFR p55 and p75), interleukin-1β (IL-1β), tumour necrosis factor α(TNF-α), interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) by peripheral blood mononuclear cells (PBMC} and whether changes reflect clinical response. Significant stimulation of IL-lra and sTNFR p75 as well as inhibition of IL-8 production of PBMC were associated with clinical improvement observed in patients treated with MTX. When defining the characteristics of patients at study entry retrospectively in responders and non-responders a significantly lower ratio of IL-lra :IL-1β production before and its increase upon treatment was associated with clinical response in 13 patients compared to five patients not responding to MTX. In addition, clinical improvement was associated with decreased synthesis of IL-1β, TNF-α and IL-8 induced by bacterial lipopolysaccharide, IL-1α and IL-1β in PBMC in vitro. These findings suggest that MTX therapy reverses the inflammatory type of rheumatoid arthritis (RA) blood mononuclear cells by stimulating cytokine inhibitor production while inhibiting inflammatory cytokine release at the same time. This may explain the powerful anti-inflammatory properties of low-dose MTX as observed in most RA patients. Pretreatment determination of the IL-lra: IL-1β ratio in PBMC may be predictive with regard to a favourable therapeutic response and therefore may be useful for the selection of RA patients to be treated with MT
Identification of the protein kinases Pyk3 and Phg2 as regulators of the STATc-mediated response to hyperosmolarity
Cellular adaptation to changes in environmental osmolarity is crucial for cell survival. In Dictyostelium, STATc is a key regulator of the transcriptional response to hyperosmotic stress. Its phosphorylation and consequent activation is controlled by two signaling branches, one cGMP- and the other Ca(2+)-dependent, of which many signaling components have yet to be identified. The STATc stress signalling pathway feeds back on itself by upregulating the expression of STATc and STATc-regulated genes. Based on microarray studies we chose two tyrosine-kinase like proteins, Pyk3 and Phg2, as possible modulators of STATc phosphorylation and generated single and double knock-out mutants to them. Transcriptional regulation of STATc and STATc dependent genes was disturbed in pyk3(-), phg2(-), and pyk3(-)/phg2(-) cells. The absence of Pyk3 and/or Phg2 resulted in diminished or completely abolished increased transcription of STATc dependent genes in response to sorbitol, 8-Br-cGMP and the Ca(2+) liberator BHQ. Also, phospho-STATc levels were significantly reduced in pyk3(-) and phg2(-) cells and even further decreased in pyk3(-)/phg2(-) cells. The reduced phosphorylation was mirrored by a significant delay in nuclear translocation of GFP-STATc. The protein tyrosine phosphatase 3 (PTP3), which dephosphorylates and inhibits STATc, is inhibited by stress-induced phosphorylation on S448 and S747. Use of phosphoserine specific antibodies showed that Phg2 but not Pyk3 is involved in the phosphorylation of PTP3 on S747. In pull-down assays Phg2 and PTP3 interact directly, suggesting that Phg2 phosphorylates PTP3 on S747 in vivo. Phosphorylation of S448 was unchanged in phg2(-) cells. We show that Phg2 and an, as yet unknown, S448 protein kinase are responsible for PTP3 phosphorylation and hence its inhibition, and that Pyk3 is involved in the regulation of STATc by either directly or indirectly activating it. Our results add further complexities to the regulation of STATc, which presumably ensure its optimal activation in response to different environmental cues
Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells
Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to onethird
of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses
and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective
vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with
host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the
leading candidate for development of an effective vaccine against toxoplasmosis.
Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into
the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine.
Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the
specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime
plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1
was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase
Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB).
Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by
enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods.
Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1
gene from T. gondii parasites and are promising approaches for antigen preparation in vaccine development
An amphitropic cAMP-binding protein in yeast mitochondria
ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)
Import of cytochrome c into mitochondria
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa.
A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5–10-fold by NADH > NADPH > glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function.
Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c
Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease
OBJECTIVE:
To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines.
STUDY DESIGN:
This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention.
RESULTS:
There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications.
CONCLUSIONS:
More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management
Attenuation of Helicobacter pylori-induced gastric inflammation by prior cag− strain (AM1) infection in C57BL/6 mice
Helicobacter pylori, colonize in stomach of ~50% of the world population. cag pathogenicity Island of H.
pylori is one of the important virulent factors that attributed to gastric inflammation. Coinfection with H. pylori strain with different genetic makeup alters the degree of pathogenicity and susceptibility towards antibiotics. The present study investigates host immunomodulatory effects of H. pylori infection by both cag+ strain (SS1) and cag− strain (AM1). C57BL/6 mice were infected with AM1 or SS1 strain as well as AM1 followed by SS1 (AM1/SS1) and vice versa.
Results: Mice infected with AM1/SS1 strain exhibited less gastric inflammation and reduced proMMP9 and proMMP3
activities in gastric tissues as compared to SS1/SS1 and SS1/AM1 infected groups. The expression of both MMP9 and
MMP3 followed similar trend like activity in infected tissues. Both Th1 and Th17 responses were induced by SS1 strain more profoundly than AM1 strain infection which induced solely Th1 response in spleen and gastric tissues. Moreover, IFN-γ, TNF-α, IL-1β and IL-12 were significantly downregulated in mice spleen and gastric tissues infected by AM1/SS1 compared to SS1/SS1 but not with SS1/AM1 coinfection. Surprisingly, IL-17 level was dampened significantly in AM1/ SS1 compared to SS1/AM1 coinfected groups. Furthermore, number of Foxp3+ T-regulatory (Treg) cells and immunosuppressive
cytokines like IL-10 and TGF-β were reduced in AM1/SS1 compared to SS1/SS1 and SS1/AM1 coinfected
mice gastric tissues.
Conclusions: These data suggested that prior H. pylori cag− strain infection attenuated the severity of gastric pathology induced by subsequent cag+ strain in C57BL/6 mice. Prior AM1 infection induced Th1 cytokine IFN-γ, which reduced the Th17 response induced by subsequent SS1 infection. The reduced gastritis in AM1/SS1-infected mice
might also be due to enrichment of AM1- primed Treg cells in the gastric compartment which inhibit Th1 and Th17
responses to subsequent SS1 infection. In summary, prior infection by non-virulent H. pylori strain (AM1) causes reduction of subsequent virulent strain (SS1) infection by regulation of inflammatory cytokines and MMPs expressio
Effects of N-Glycosylation Site Removal in Archaellins on the Assembly and Function of Archaella in Methanococcus maripaludis
In Methanococcus maripaludis S2, the swimming organelle, the archaellum, is composed of three archaellins, FlaB1S2, FlaB2S2 and FlaB3S2. All three are modified with an N-linked tetrasaccharide at multiple sites. Disruption of the N-linked glycosylation pathway is known to cause defects in archaella assembly or function. Here, we explored the potential requirement of N-glycosylation of archaellins on archaellation by investigating the effects of eliminating the 4 N-glycosylation sites in the wildtype FlaB2S2 protein in all possible combinations either by Asn to Glu (N to Q) substitution or Asn to Asp (N to D) substitutions of the N-glycosylation sequon asparagine. The ability of these mutant derivatives to complement a non-archaellated ΔflaB2S2 strain was examined by electron microscopy (for archaella assembly) and swarm plates (for analysis of swimming). Western blot results showed that all mutated FlaB2S2 proteins were expressed and of smaller apparent molecular mass compared to wildtype FlaB2S2, consistent with the loss of glycosylation sites. In the 8 single-site mutant complements, archaella were observed on the surface of Q2, D2 and D4 (numbers after N or Q refer to the 1st to 4th glycosylation site). Of the 6 double-site mutation complementations all were archaellated except D1,3. Of the 4 triple-site mutation complements, only D2,3,4 was archaellated. Elimination of all 4 N-glycosylation sites resulted in non-archaellated cells, indicating some minimum amount of archaellin glycosylation was necessary for their incorporation into stable archaella. All complementations that led to a return of archaella also resulted in motile cells with the exception of the D4 version. In addition, a series of FlaB2S2 scanning deletions each missing 10 amino acids was also generated and tested for their ability to complement the ΔflaB2S2 strain. While most variants were expressed, none of them restored archaellation, although FlaB2S2 harbouring a smaller 3-amino acid deletion was able to partially restore archaellation
- …
