118 research outputs found
Impact of digital interdisciplinary consultation on secondary care referrals by general practitioners:a protocol for a stepped-wedge cluster randomised controlled trial
INTRODUCTION: Optimal collaboration between general practice and hospital care is crucial to maintain affordable and sustainable access to healthcare for the entire population. General practitioners (GPs) are the gatekeepers to specialist care and patients will visit hospitals mostly only after referral. However, a substantial part of these referrals may be inappropriate, as communication between GPs and medical specialists can be challenging and referring patients may be the most obvious action for a GP to perform.A new digital platform (Prisma) connects GPs and specialists in interdisciplinary groups and facilitates asynchronous, accessible and fast teleconsultation within the group. No previous research has been done to evaluate the impact of this new platform on the referral rates to the hospital. METHODS AND ANALYSIS: A stepped-wedge randomised controlled trial (RCT) will be performed in Zwolle region in the Netherlands to analyse the effect of introduction of the platform on rate of inappropriate referrals to orthopaedic surgery. In four steps, GPs in the region will be given access to the platform. GPs will be part of the control condition until randomisation to the intervention. According to our sample size calculation, we need to include 18 practices with 1008 patients presenting with hip and knee symptoms. Routine care data of hospital registrations will be analysed to calculate the rate of inappropriate referrals (primary outcome). Secondary outcome are costs, primary and secondary care workload, posted cases and user satisfaction. Alongside this quantitative analysis, we will evaluate patient experience, facilitators and barriers for use of the platform. ETHICS AND DISSEMINATION: The medical ethics review board of University Medical Center Groningen (UMCG), the Netherlands (METc-number: 2021/288) has confirmed that the Medical Research Involving Human Subjects Act (WMO) does not apply to the process evaluation because the study does not involve randomisation of patients or different medical treatments (letter number: M21.275351). TRIAL REGISTRATION NUMBER: NL9704
ESA's wind Lidar mission ADM-AEOLUS; on-going scientific activities related to calibration, retrieval and instrument operation
The Earth Explorer Atmospheric Dynamics Mission
(ADM-Aeolus) of ESA will be the first-ever satellite to
provide global observations of wind profiles from
space. Its single payload, namely the Atmospheric
Laser Doppler Instrument (ALADIN) is a directdetection
high spectral resolution Doppler Wind Lidar
(DWL), operating at 355 nm, with a fringe-imaging
receiver (analysing aerosol and cloud backscatter) and a
double-edge receiver (analysing molecular backscatter).
In order to meet the stringent mission requirements on
wind retrieval, ESA is conducting various science
support activities for the consolidation of the on-ground
data processing, calibration and sampling strategies.
Results from a recent laboratory experiment to study
Rayleigh-Brillouin scattering and improve the
characterisation of the molecular lidar backscatter
signal detected by the ALADIN double-edge Fabry-
Perot receiver will be presented in this paper. The
experiment produced the most accurate ever-measured
Rayleigh-Brillouin scattering profiles for a range of
temperature, pressure and gases, representative of
Earth’s atmosphere. The measurements were used to
validate the Tenti S6 model, which is implemented in
the ADM-Aeolus ground processor.
First results from the on-going Vertical Aeolus
Measurement Positioning (VAMP) study will be also
reported. This second study aims at the optimisation of
the ADM-Aeolus vertical sampling in order to
maximise the information content of the retrieved
winds, taking into account the atmospheric dynamical
and optical heterogeneity. The impact of the Aeolus
wind profiles on Numerical Weather Prediction (NWP)
and stratospheric circulation modelling for the different
vertical sampling strategies is also being estimated
Recommended from our members
Review and assessment of latent and sensible heat flux accuracy over the global oceans
For over a decade, several research groups have been developing air-sea heat flux information over the global ocean, including latent (LHF) and sensible (SHF) heat fluxes over the global ocean. This paper aims to provide new insight into the quality and error characteristics of turbulent heat flux estimates at various spatial and temporal scales (from daily upwards). The study is performed within the European Space Agency (ESA) Ocean Heat Flux (OHF) project. One of the main objectives of the OHF project is to meet the recommendations and requirements expressed by various international programs such as the World Research Climate Program (WCRP) and Climate and Ocean Variability, Predictability, and Change (CLIVAR), recognizing the need for better characterization of existing flux errors with respect to the input bulk variables (e.g. surface wind, air and sea surface temperatures, air and surface specific humidities), and to the atmospheric and oceanic conditions (e.g. wind conditions and sea state). The analysis is based on the use of daily averaged LHF and SHF and the asso- ciated bulk variables derived from major satellite-based and atmospheric reanalysis products. Inter-comparisons of heat flux products indicate that all of them exhibit similar space and time patterns. However, they also reveal significant differences in magnitude in some specific regions such as the western ocean boundaries during the Northern Hemisphere winter season, and the high southern latitudes. The differences tend to be closely related to large differences in surface wind speed and/or specific air humidity (for LHF) and to air and sea temperature differences (for SHF). Further quality investigations are performed through comprehensive comparisons with daily-averaged LHF and SHF estimated from moorings. The resulting statistics are used to assess the error of each OHF product. Consideration of error correlation between products and observations (e.g., by their assimilation) is also given. This reveals generally high noise variance in all products and a weak signal in common with in situ observations, with some products only slightly better than others. The OHF LHF and SHF products, and their associated error characteristics, are used to compute daily OHF multiproduct-ensemble (OHF/MPE) estimates of LHF and SHF over the ice-free global ocean on a 0.25° × 0.25° grid. The accuracy of this heat multiproduct, determined from comparisons with mooring data, is greater than for any individual product. It is used as a reference for the anomaly characterization of each individual OHF product
Self-regulation of ice flow varies across the ablation area in South-West Greenland
The concept of a positive feedback between ice flow and enhanced melt rates in a warmer climate fuelled the debate regarding the temporal and spatial controls on seasonal ice acceleration. Here we combine melt, basal water pressure and ice velocity data. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Annual velocities even slightly decreased with increasing melt. Results also indicate that melt variations are most important for velocity variations in the upper ablation zone up to the equilibrium line altitude. During the extreme melt in 2012, a large velocity response near the equilibrium line was observed, highlighting the possibility of meltwater to have an impact even high on the ice sheet. This may lead to an increase of the annual ice velocity in the region above S9 and requires further monitoring
Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)
Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio
Two philosophies for solving non-linear equations in algebraic cryptanalysis
Algebraic Cryptanalysis [45] is concerned with solving of particular systems of multivariate non-linear equations which occur in cryptanalysis. Many different methods for solving such problems have been proposed in cryptanalytic literature: XL and XSL method, Gröbner bases, SAT solvers, as well as many other. In this paper we survey these methods and point out that the main working principle in all of them is essentially the same. One quantity grows faster than another quantity which leads to a “phase transition” and the problem becomes efficiently solvable. We illustrate this with examples from both symmetric and asymmetric cryptanalysis. In this paper we point out that there exists a second (more) general way of formulating algebraic attacks through dedicated coding techniques which involve redundancy with addition of new variables. This opens numerous new possibilities for the attackers and leads to interesting optimization problems where the existence of interesting equations may be somewhat deliberately engineered by the attacker
Calibration of Traffic Simulation Models using SPSA
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική
Distal radius fractures in children: substantial difference in stability between buckle and greenstick fractures
Background and purpose Numerous follow-up visits for wrist fractures in children are performed without therapeutic consequences. We investigated the degree to which the follow-up visits reveal complications and lead to change in management. The stability of greenstick and buckle fractures of the distal radius was assessed by comparing the lateral angulation radiographically
- …