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ABSTRACT

Calibration of Traffic Simulation Models
using SPSA

by

Ioulia Markou

Supervisor: Associate Professor Constantinos Antoniou

Traffic simulation models, with the default parameter values, are not suitable for all

studies. The characteristics of the network, the drivers behavior etc. are constantly

changing. Each model represents this diversity through its parameters. When the

basic format of the model is known, and there is enough data available, calibration

is the procedure that aims at estimating the parameters that will lead to results, as

close as possible to the observed ones in the field. The calibration is a crucial step

for the successful application of traffic simulation models in transportation planning

and real traffic management.

In this thesis, the calibration methodology using the algorithm Simultaneous Per-

turbation Stochastic Approximation (SPSA) is studied. The behavior of the algorithm

is analyzed through various applications. Several particular behaviours are identified

for which solutions are suggested. The algorithm was prepared to apply even in a

quite demanding calibration workload, that of the expressway network of Singapore

using the DymaMIT. Results indicate that SPSA successfully manages to reach the

optimal solution, however with different speed and efficiency each time. The param-

xiii



eter values were proved to be very important, especially the parameters a, alpha and

c. Mismatches could even lead to the final failure of the algorithm’s convergence to

the optimal solution.
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CHAPTER I

Introduction

Mathematical models have become a very useful tool for representing various phe-

nomena encountered in daily life. The demand for these models is increased as they

are the main component of microscopic and macroscopic simulation software. Such

programs are widely used in the transportation sector for the management, control

and safety of traffic (capacity analysis, accident analysis, effects of traffic studies, in-

tersection design, etc.). The modeling of driver behavior has contributed significantly

to the development of intelligent systems (Intelligent Transportation Systems (ITS))

(Koutsopoulos and Farah, 2012).

The traffic models, with the default parameter values (or parameter values that

the manufacturer gives), are not suitable for all studies. Most models and systems

available make assumptions about the behavior of drivers, which are based on data

collected under normal conditions and do not reflect the behavior of drivers under

pressure. Their behavior can be affected by many parameters, such as the charac-

teristics of drivers (age, sex, etc.), the perception of the driver (psychological state,

stress, etc.), characteristics of the route (trip purpose, familiarity with the network

etc.) and the environment (weather, behaviour of other drivers, emergencies).

The specifics of the environment are introduced indirectly to a model, through

the values of their parameters. Prices change according to the requirements of each
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research and the background. When the basic format of the model is known, and

there is enough data available, calibration is the procedure that aims at estimating

the parameters that will lead to results, as close as possible to the observed ones in the

field. It shows which might be the“correct” combination of parameter values that will

improve the agreement between model output and observed data; it is a widely used

technique in the analysis of engineering systems. For the calibration procedure, either

optimization algorithms or state-space representations could be used, depending on

the nature and the requirements of the problem.

The main goal of this thesis is the calibration of traffic simulation models using

the algorithm Simultaneous Perturbation Stochastic Approximation (SPSA). The be-

havior of the algorithm is analyzed through various applications. Several particular

behaviours are identified for which solutions are suggested. The algorithm was pre-

pared to apply even in a quite demanding calibration workload, that of the expressway

network of Singapore.

At the first part of the paper, there is a bibliographic overview of calibration

methodology. What follows, is a description of the various algorithms used. After-

wards, some simulation models are referenced, such as car-following models, which

are utilized in a later chapter, to investigate the behavior of the SPSA.

At the second part begins by outlining the various model inputs and param-

eters.The SPSA algorithm is thoroughly analyzed, including methods of evaluating

the utilized results.

At the third part, the two basic traffic model calibration case studies are listed.

Sensitivity analysis is implemented and all the results of the algorithm are presented

in detail. Furthermore there is a mention on certain difficulties which occurred and

how they were resolved.

At the fourth part, the on-line calibration approach using the a DTA system

is demonstrated. The DynaMIT (Dynamic network assignment for the Management

2



of Information to Travelers) is presented in detail. Afterwards the roads network

of Singapore is described as well as the difficulties encountered in the use of the

macroscopic simulator. To conclude, the main steps that demand the simulation and

DynaMIT parameters calibration using SP-EKF are presented.

Conclusions and directions for further research are outlined in the final part of

this thesis.
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CHAPTER II

Background Theory

This chapter reviews the main principles of calibration methodology, which are

followed in several transportation researches. A variety of optimization algorithms

and state-space models are described. Furthermore, the systematic calibration of

simulation based DTA systems and other traffic simulation models is presented.

2.1 Calibration Methodology

Mathematical models have a wide-spread use in transportation researches. All

forms of traffic phenomena, like the formation of traffic jams, have almost universal

properties that can be included in a plethora of traffic simulation algorithms. As a

result, the availability of sufficiently accurate macroscopic and microscopic models

is important for the design and the testing of modern freeway traffic control strate-

gies. Their performance is largely independent of network’s initial condition, data

that could be incorporated in a model through different parameter values or small

methodology changes.

When the basic format of the model is known and there is enough data available,

calibration is the procedure that aims at estimating the parameters, that will lead to

results close as possible to the observed ones in the field. It shows which might be the

“correct” combination of parameter values that will improve the agreement between

5



model output and observed data. It is a widely used technique in the analysis of

engineering systems.

The majority of the analytical methods use linear relationships in one way or

another (de Souza and Junqueira, 2005). The examination of a calibration function

for linearity is an important performance figure in validating an analytical method, as

well as an everyday task in routine analytical operations. Additionally, an estimation

of the uncertainty bounds around the optimum is useful. This uncertainty should be

adequately accounted for in subsequent model applications (Janssen and Heuberger ,

1995).

The calibration framework is a need which is continuously highlighted through

several researches. Allström et al. (2014) presented a framework for calibrating a

highway travel time estimation model, based on a two-stage process. Initially, the

fundamental diagrams of links were calibrated, and in a second stage, the best possible

model parameters were defined using a search method.

Ma et al. (2014) proposed a model calibration approach when on-road or in-lab

instantaneous emission measurements are not directly available. Their final calibrated

model was validated on several road networks with traffic states generated by the same

microscopic traffic simulation model.

Antoniou et al. (2014) explored the use of distributions of collected data (such as

accelerations, using opportunistic sensors, such as smart-phone accelerometers) for

calibration purposes. It was noted that the collected data need to be appropriately

pre-processed.

A microscopic calibration and validation of Car-Following Models was also im-

plemented by Treiber and Kesting (2013). A special emphasis was given to the data

requirements and preparation, as many authors conclude that there is an unsurmount-

able barrier for the rms error resulting in a stalemate when determining the “best”

model. To conclude Figueiredo et al. (2014) presented which calibration parameters

6



errors tend to affect more the simulated results, and what are adequate precision

levels to be achieved in a calibration process.

2.2 Calibration Algorithms

For the calibration procedure, either optimization algorithms or state-space rep-

resentations could be used, depending on the nature and the requirements of the

problem. At the first section, linear state-space models are described, and more

specifically the Kalman Filter and its modified methodologies. At the second section,

some significant optimization algorithms are presented, giving greater emphasis to

the solution approach of Simultaneous Perturbation Methods.

2.2.1 State-space formulation

Calibration using a state-space model aims at improving the estimation accuracy

and at maintaining the forecasting power of a model. Transition and measurement

equations are used for the final problem solution. The state vector, which is defined as

“the minimal set of data that is sufficient to uniquely describe the dynamic behavior

of the system” (Antoniou, 2004) is fundamental for the state-space model description.

For the OD estimation and prediction problem, Ashok and Ben-Akiva (1993) pro-

posed the use of deviations. As it is desirable to incorporate into the formulation as

much historical information as possible, the use of deviations will bring several ad-

vantages to the application.The model formulation would indirectly take into account

all the available a priori structural information. Traffic flow variables have skewed

distributions, but the corresponding deviations on the other hand, have symmetric

deviations and hence are more amenable to approximation by a normal distribution

(Antoniou, 2004).
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2.2.1.1 Set of parameters

The behavior of the studied system can be described with a set of parameters

which compose the state vector xh. It includes the parameters πh that need to be

calibrated during the time interval h:

• OD flows,

• Speed-density relationship parameters and

• Segment capacities

It can be represented as:

πh =

[
xh ph ch

]T
=

[
xh γh

]T
(2.1)

where xh represents the vector of OD flows departing their origins during interval

h, ph the vector holding the values of parameters of the speed-density relationship

models during interval h, ch the vector of segment capacities for interval h, and γh

summarizes the supply models’ parameters.

The evolution of the state vector over time is captured by transition equations.

Their general formulation is:

πh+1 = T (πh, πh+1, ...πh−p) + η
′

h (2.2)

where T is a function capturing the dependence of the parameter vector πh+1

during interval h + 1 on the values of the parameter vector during the past several

intervals, p is the number of past parameter vectors that are considered and η
′

h is a

vector of random error terms.

8



2.2.2 Kalman-Filter

The formulation of several traffic simulation models is not linear, due to indirect

measurement equations. However, it is useful to review a recursive solution to the

discrete data linear filtering problem that R.E. Kalman described (Kalman (1960)).

The Kalman Filter is the optimal mean square error (MMSE) estimator that can be

obtained through linear estimators.

A form of feedback control is used for the Kalman filter’s estimations. Firstly the

filter estimates the process state at a certain time, and then obtains feedback in the

form of (noisy) measurements. Therefore, it presents two groups of equations:

• Time update equations

• Measurement equations

The first group is responsible for projecting the current situation in the future and

the second group for the feedback - i.e. for incorporating a new measurement into

the a priori estimate to obtain an improved a posteriori estimate (Welch and Bishop

(1995)).

The main steps of the Kalman Filter are as follows:

9



Algorithm II.1 Kalman Filter

Initialization

X0|0 = X0 (2.3)

P0|0 = P0 (2.4)

for h=1 to N do
Time update

Xh|h−1 = Fh−1Xh−1|h−1 (2.5)

Ph|h−1 = Fh−1Ph−1|h−1F
T
h−1 + Qh (2.6)

Measurement update

Gh = Ph|h−1H
T
h (HhPh|h−1H

T
h + Rh)

−1 (2.7)

Xh|h = Xh|h−1 + Gh(Yh −HhXh|h−1) (2.8)

Ph|h = Ph|h−1 −GhHhPh|h−1 (2.9)

end for

where X0 is a starting estimate of the state and P0 is the initial state of the

variance-covariance matrix. During the time update, the above values are projected

from time step h-1 to step h (Equations 2.5 and 2.6). The measurement update phase

incorporates the new information about the measurement vector Yh and generates an

a posteriori state estimate (Equation 2.8). The final step is to obtain an a posteriori

error covariance estimate via Equation 2.9. In the last important process, key role

plays the Kalman gain Gh, which is computed as per Equation 2.7.

All the above procedure is repeated N times, with the previous a posteriori es-

timated used to project or predict the new a priori estimates. It is one of the very

appealing features of the Kalman filter, as it makes practical implementations more

feasible that for instance an implementation of a Weiner filter which is designed to

operate on all on all of the data directly for each estimate (Welch and Bishop (1995)).

10



More information about the the Kalman filter, can be found in many texts, in-

cluding Maybeck (1982), Chui and Chen (1999) and Grewal and Andrews (2011).

2.2.2.1 Extended Kalman Filter

As it is already mentioned, the original Kalman filter theory applies to linear

systems. In many studies though, non-linear models have been designed and analyzed.

Solutions for these interesting problems lead to the development of modified Kalman

Filter methodologies. Good approximations are achieved by the Extended Kalman

Filter (EKF) via first order Taylor series expansion (linearization) of the appropriate

equations. In more details:

The EKF algorithm includes an intermediate linearization step (Equation 2.14),

where it is necessary to use numerical derivatives. Assuming the use of central deriva-

tives, it is necessary to evaluate the function 2n times, where n is the dimension of the

state vector. (If forward derivatives are used, then this number drops to n+1 evalua-

tions.) Each such evaluation implies one run of the simulator. Therefore, it becomes

apparent that this process of linearization dominates the computational complexity

of the algorithm.

More details are presented in Julier and Uhlmann (1997), Chui and Chen (1999)

and Liang-Qun et al. (2005).
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Algorithm II.2 Extended Kalman Filter

Initialization

X0|0 = X0 (2.10)

P0|0 = P0 (2.11)

for h=1 to N do
Time update

Xh|h−1 = Fh−1Xh−1|h−1 (2.12)

Ph|h−1 = Fh−1Ph−1|h−1F
T
h−1 + Qh (2.13)

Linearization

Hh =
∂h(x∗)

∂x∗
∣∣
x∗=Xh|h−1

(2.14)

Measurement update

Gh = Ph|h−1H
T
h (HhPh|h−1H

T
h + Rh)

−1 (2.15)

Xh|h = Xh|h−1 + Gh(Yh −HhXh|h−1) (2.16)

Ph|h = Ph|h−1 −GhHhPh|h−1 (2.17)

end for

2.2.3 Iterated Extended Kalman Filter

When the linearization of the measurement equation about the present best es-

timate of the state vector X is involved, the resulting filter is called the Iterated

Extended Kalman Filter (Iterated EKF). When this step is completed a pre-

sumably superior estimate Xh|h is available which could then be used to linearize

the measurement equation and repeat the update step. These iterations could be re-

peated as many times as deemed necessary, while assessing the numerical derivative.

The last process burdens fairly the overall runtime of the algorithm by an amount

12



equal to the EKF algorithm (Antoniou (2004)).

2.2.4 Uncented Kalman Filter

Another good approximation of non-linear transformations is the Uncented Kalman

Filter (UKF), proposed by Julier and Uhlmann (1997). It uses a deterministic sam-

pling approach (Unscented Transformation, UT) to represent a random variable us-

ing a number of deterministically selected sample points (often called sigma points).

These sample points completely capture the true mean and covariance of the Gaussian

random variable (GRV), and when propagated through the true non-linear system,

captures the posterior mean and covariance accurately to the 3rd order (Taylor series

expansion) for any nonlinearity (Wan and Van Der Merwe (2000)).The UT performs

the following (Algorithm 3):
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Algorithm II.3 Unscented Transformation

Generation of sigma points

X0|h = xh (2.18)

for i=1 to n do

Xi,h = xh + (
√

(n+ κ)Px,h)i (2.19)

end for
for i=n to 2n do

Xi,h = xh − (
√

(n+ κ)Px,h)i (2.20)

end for
Generation of weights

Wm
0 = κ/(n+ κ) (2.21)

Wc
0 = κ/(n+ κ) + (1− a2 + b) (2.22)

for i=1 to 2n do

Wm
0 = Wc

0 = 1/[2(n+ κ)] (2.23)

end for

The UKF firstly uses the 2n+1 sigma points that the Unscented Transformation

has calculated for the time update step. The prior estimate of the state vector and

the state covariance is computed as a weighted sum of the propagated sigma points

(Equation 2.25 and 2.26). In a second phase, the sigma points are transformed into

a vector of respective measurements, through the Equation 2.27. The measurement

vector is computed as a weighted sum of the generated measurements (Equation 2.28).

14



The covariance of the state and the measurement vectors play a significant role in

the calculation of the Kalman gain (Equations 2.29, 2.30). The weights that have been

obtained from the Unscented Transformation during the initialization step, are used

in the calculations. Equation 2.32 introduces the measurement vector yh and uses

the Kalman gain to correct the state estimate xh. Finally, through the Equation 2.33,

the state covariance is updated.
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Algorithm II.4 Unscented Kalman Filter

for h=1 to N do

Generate sigma points and weights using the Unscented Transformation (Algorithm
3)

Time update

Xh|h−1 = f(Xh−1) (2.24)

xh|h−1 =
2n∑
i=0

Wm
i Xi,h|h−1 (2.25)

Px,h|h−1 =
2n∑
i=0

W c
i (Xi,h|h−1 − xh|h−1)(Xi,h|h−1 − xh|h−1)T + Qh (2.26)

yi,h|h−1 = h(Xi,h|h−1) (2.27)

yh|h−1 =
2n∑
i=0

Wm
i yi,h|h−1 (2.28)

Measurement update

Py,h =
2n∑
i=0

W c
i (yi,h|h−1 − yh|h−1)(yi,h|h−1 − yh|h−1)T + Rh (2.29)

Pxy,h =
2n∑
i=0

W c
i (Xi,h|h−1 − xh|h−1)(yi,h|h−1 − yh|h−1)T (2.30)

Gh = Pxy,hP
−1
y,h (2.31)

xh = xh|h−1 + Gh(yh − yh|h−1) (2.32)

Px,h = Px,h|h−1 −GhPy,hG
T
h (2.33)

end for
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2.2.5 Limiting Extended Kalman Filter

A special case of the Extended Kalman Filter, which improves the computational

performance of the algorithm, was proposed in Antoniou (2004) and in Antoniou

et al. (2007a). The Limiting Extended Kalman Filter overtakes the step of the

linearization of the measurement equation and consequently the computation time is

considerably decreased. In more detail:

• The limiting Kalman Filter replaces the Gain matrix G with its limit G, called

the limiting (or stable) Kalman gain matrix. The matrix is computed off-line,

as the average of a number of available Kalman gain matrices:

G =

∑
m=1:M Gm

M
(2.34)

where Gm is the Kalman gain obtained from EKF during interval m and M is

the total number of available Kalman gain matrices.

• Using the same principle as above, the time-dependent matrix Hh is also re-

placed with the average H of a number of available matrices:

H =

∑
m=1:M Hm

M
(2.35)

where Hm is the matrix obtained from EKF during interval m and M is the

total number of available matrices.

• The resulting matrix H is used then to update the state covariance (Equa-

tion 2.17).

Antoniou (2004) additionally mentioned that, weighted averages could also be

considered, instead of the average of all the available Kalman gain matrices from the
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off-line computations. For example lower weight values could be assigned to older

gain matrices.

The performance of that approximate algorithm proved very close to the “exact”

EKF and raised interest for the approach. Two characteristic case studies were im-

plemented by Antoniou et al. (2013). Through the first case scenario in a synthetic

network, it was proved that LimEKF provides comparable to that of the best algo-

rithm (EKF) corrections and minimizes the discrepancy between the simulated and

observed traffic conditions. Additional experiments undertaken in a real-world, large-

scale network in Stockholm, Sweden further validated these findings. The noise that

creeps into the computation of the individual Kalman gain matrices was reduced and

this may be one of the key reasons for its good performance.

2.2.6 SP - Extended Kalman Filter

A modified Kalman Filter methodology for non-linear models has been developed

by Antoniou et al. (2007b). More specifically, the integration of simultaneous pertur-

bation in the step of linearization was presented. The proposed methodology is based

on the Extended Kalman Filter, which has already been described in Section 2.2.1.

The innovation of SP is that each of the elements are not perturbed individu-

ally, but instead all elements are perturbed simultaneously. Only two functions are

necessary for the gradient approximation. In the proposed algorithm of SP-EKF the

linearization step:

Hh =
∂h(x∗)

∂x∗

∣∣∣∣
x∗=Xh|h−1

(2.36)

is replaced by the simultaneous perturbation approximation:

18



ĝ(θi) =
z(θi + ci∆i)− z(θi − ci)∆i)

2ci



∆−1i1

∆−1i2
...

∆−1iK


(2.37)

The use of the simultaneous perturbation was proved far more efficient than the

usual numerical derivatives. All on-line calibrated sets of parameters result in signif-

icant improvements. It is therefore interesting and challenging to see how SP-EKF

could be applied on DynaMIT.

2.2.7 Optimization Algorithms

Optimization algorithms are significant for the design, analysis and control of

most engineering systems. A state-space equivalent formulation is the so-called direct

optimization formulation. Ashok (1996) has discussed the connection between the

state-space and the Generalized Least Square direct minimization formulations in

general, and Kalman Filter and least square estimation as their respective solutions

in specific.

Optimization algorithms can be classified into pattern search, path search, and

random search techniques. Commonly adopted optimization algorithms also need an

explicit objective function. A small description of some optimization methods follows.

2.2.7.1 Partial least-squares (PLS) modeling

Partial least-squares (PLS) modeling is a statistical tool that has already been

applied to the quantitative analysis of various data. It is a set of algorithms developed

by Word for use in econometrics (Manne, 1987). They have in common that no a

priori assumptions are made about the model structure. Geladi and Kowalski (1986)
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provided a tutorial about this regression method. In order to make the calculations

easier, it is suggested to tailor the data in the calibration set. The average value for

each variable is calculated form the calibration set and then subtracted from each

corresponding variable.

Dependent variables and the independent ones can be scaled differently because

the sensitivities absorb the differences in scaling. They are treated according to the

following three ways (Geladi and Kowalski , 1986):

• No scaling is needed when all the variables in a block are measured in the same

units

• Variance scaling is used when the variables in a block are measured in different

units; scaling is accomplished by dividing all the values for a certain variable by

the standard deviation for that variable, so that the variance for every variable

is unity.

• One can decide that certain variables are of less importance and hence should

not influence the model very much; so they are given a smaller weight.

PLS software has been made available by several Fourier transform infrared (FT-

IR) instrument manufacturers for quantitative spectral analyses. PLS is s capable of

being a full-spectrum method and therefore enjoys the signal averaging advantages

of other full-spectrum methods such as PCR and CLS.

2.2.7.2 Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is “a way of identifying patterns in data,

and expressing the data in such a way as to highlight their similarities and differences”,

as Smith (2002) noted. It a powerful tool, because it can be hard to find patterns

in data of high dimension. When the appropriate ones are found, data could be

compressed by reducing the number of dimensions, without much loss of information.
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A detailed tutorial on the specific methodology of calibration and data analysis could

be found in Smith (2002).

PCA has been proposed as a method for traffic anomaly detection (Ringberg et al.,

2007). Traffic measurements from two IP backbones (Ablilene and Geant) across

three different traffic aggregations (ingress routers, OD flows, and input links) were

analyzed. The final product was a detailed inspection of the feature time series for

each suspected anomaly.

Lakhina et al. (2004) made its application very popular in the networking com-

munity. The method detected when a volume anomaly is occurring, identified the

underlying OD flow which is the source of anomaly, and accurately estimated the

amount of traffic involved in the anomalous OD flow.

However, PCA is very sensitive to its parameters settings (Ringberg et al., 2007).

The authors have reported about instability problems encountered when using PCA,

however, they failed in providing precise reasons for their observation. Brauckhoff

et al. (2009) mentioned that PCA does not consider the temporal correlation of the

data.

2.2.7.3 Generalized Likelihood Uncertainty Estimation (GLUE)

The GLUE procedure recognizes the equivalence or near-equivalence of different

sets of parameters in the calibration of distributed models. It is based upon making a

large number of runs of a given model with different sets of parameter values, chosen

randomly from specified parameter distributions. Noted that“on a basis of comparing

predicted and observed responses, each set of parameter values is assigned a likelihood

of being a simulator of the system. That likelihood may be zero when it is considered

that the set of parameter values gives a behavior that is not characteristic of the

system, either because of the direct comparison with the available data, or because

of conditioning on the basis of some a priori knowledge about the system”.
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All the simulations with a likelihood measure significantly greater than zero (0)

are retained for consideration. If a rescaling of the likelihood values is chosen, then

the sum of all likelihood values equals one (1) yields a distribution function for the

parameter sets. Under these conditions, the optimal solution during the calibration

search is given a likelihood of one (1) and all the others are set to zero (0). According

to Beven and Binley (1992), GLUEs procedure requirements are:

• A formal definition of a likelihood measure or set of likelihood measures

• A formal definition of a likelihood measure or set of likelihood measures.

• An appropriate definition of the initial range of distribution of parameter values

• A procedure for using likelihood weights in uncertainty estimation

• A procedure for updating likelihood weights recursively as new data become

available

• A procedure for evaluating uncertainty such that the value of additional data

can be assessed.

2.2.7.4 Nelder-Mead method

The Nelder-Mead method or downhill simplex method or amoeba method is a

commonly used nonlinear optimization technique, which is a well-defined numerical

method for problems for which derivatives may not be known. It was proposed by

Nelder and Mead (1965) and is a technique for minimizing an objective function in a

many-dimensional space.

The method uses the concept of a simplex, which is a special polytope of N+1

vertices in N dimensions. It approximates a local optimum of a problem with N

variables when the objective function varies smoothly and in unimodal.
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The Nelder-Mead algorithm was used by Spiliopoulou et al. (2014) through the

calibration procedure, for the calculation of the optimal parameter values, and the

minimum value of the objective function. It was also used by Brockfeld et al. (2004)

to calibrate a small set of supply parameters in a wide range of microscopic and

macroscopic traffic models. Others report on the successful application of genetic

algorithms (GA) for the calibration of select parameters in various microscopic traffic

simulation tools (Abdulhai et al., 1999; Lee et al., 2001; Kim and Rilett , 2004).

An improved method, called Globalized Bounded Nelder-Mead (GBNM) algo-

rithm, is particularly adapted to tackle multimodal, discontinuous optimization prob-

lems, for which it is uncertain that a global optimization can be afforded (Luersen

et al., 2004). It does not need sensitivities and constructively uses computer resources

up to a given limit. More details could be found in Luersen et al. (2004) and Ghiasi

et al. (2008).

2.2.7.5 Box-Complex method

The Box-Complex method follows some of the principles of the Nelder-Mead ap-

proach. More specifically, they both begin with a set of randomly-selected feasible

points that span the search space. The point with the highest objective function

value in each iteration is replaced by its reflection about the centroid of the remain-

ing points. It the result gets worse, the studied point may be moved closer to the

centroid using some contraction scheme. More details could be found in Box (1965).

Balakrishna (2006) proposed the combination of the Box-Complex and SNOBFIT

optimization algorithms as a solution approach of the off-line calibration problem.

The first algorithm is able to cover the feasible space effectively, while the SNOBFIT

algorithm utilizes the information from every function evaluation to systematically

search for local and global minima.
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2.2.7.6 BOSS Quattro package

The Boss Quattro package is an optimization tool that has been used in several

projects, such as the calibration of the MITSIMLab model. It is a general-purpose

design program that includes several “engines”: optimization, parametric studies,

”Monte-Carlo” studies, “design of experiments” and updating. According to Radov-

cic and Remouchamps (2002), the classes of problems that could be solved using

BOSS/Quattro are:

• Linear and nonlinear convex constrained problems with a large number of vari-

ables and/or design functions. The objective function is supposed to be mono-

tonic. The proposed algorithm is ConLin algorithm.

• Problems with mixed discrete and continuous variables.

• General nonlinear optimization with continuous functions The proposed algo-

rithms are MDQA (method of diagonal quadratic approximations), GCMMA

(globally convergent method of moving asymptotes by Svanberg) and SQP (se-

quential quadratic programming).

• Updating problems for models that have not precisely set parameters.

• General nonlinear problems with practically unavailable derivatives

BOSS-Quattro’s open architecture allows a wide spectre of possible design opti-

mization approaches from m parametric studies and various simulations to sensitivity

analyses (Doľsak and Novak , 2011).

2.2.8 Stochastic approximation

The mathematical representation of the simultaneous perturbation methods is the

minimization (or maximization) of some scalar-valued objective function with respect
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to a vector of adjustable parameters (Spall , 1998b). The proposed methodology is

a step-by-step procedure for changing the adjustable parameters from some initial

guess to a value that offers an improvement in the objective function (Figure 2.1).

Figure 2.1: Example of stochastic optimization algorithm minimizing loss
function L(θ1, θ2) (Source: (Spall , 1998b))

There has been a growing interest in recursive optimization algorithms that do not

depend on direct gradient information or measurements (such as R-M SA algorithm),

but they are based on an approximation of the gradient formed from (generally noisy)

measurements of the loss function.

Spall (1998b) mentioned that, as a general rule, when speed is measured in number

of iterations, the gradient-based algorithms converge faster to the optimal solution

than those using loss functionbased gradient approximations. On the basis of asymp-

totic theory, the second methodology requires additional information.

The SPSA and FDSA procedures are in the general recursive SA form:

θi+1 = θi − αiĝ(θi) (2.38)
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where θi is the parameter vector at the beginning of iteration i; ĝ(θi) is a current

estimation of the gradient and αi is a gain sequence of step sizes. Under appropriate

conditions, the iteration in equation 2.38 will converge to θ* in some stochastic sense.

2.2.8.1 Finite Difference Stochastic Approximation (FDSA)

The gradient approximation ĝ(θi) is the essential part of the Equation 2.38. One-

sided gradient approximations involve measurements y(θ̂k) and y(θ̂k + perturbation),

while two-sided approximations involve measurements of the form y(θ̂k ± perturba-

tion). The classical method for gradient free stochastic optimization is the Kiefer-

Wolfowitz finite-difference SA (FDSA) algorithm (Kiefer et al., 1952).

The two-sided FD approximation for use with Equation 2.38 is

ĝ(θi) =


y(θ̂i+ciξ1)−y(θ̂i−ciξ1)

2ci

...

y(θ̂i+ciξp)−y(θ̂i−ciξp)
2ci

 (2.39)

where ξi denotes a vector with a 1 in the ith place and 0’s elsewhere and ck > 0

defines the difference magnitude. The pair ai, ci are the gains (or gain sequences) for

the FDSA algorithm.

A total of 2p function evaluations are required per symmetric gradient computa-

tion. The effort per iteration increases each time linearly with the problem size.

2.2.8.2 Simultaneous Perturbation Stochastic Approximation (SPSA)

The SPSA methodology reduces significantly the run times from days to minutes or

hours compared other applicable algorithms. For example, Robbins-Monro algorithm

(Robbins and Monro, 1951), which concludes when an unbiased estimator of the

gradient is used to perform the parameter updates, requires detailed knowledge of
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the model being calibrated. Consequently, similar work is considered impractical

in a demanding environment such as the DTA models which have large-scale and

stochastic nature.

SPSA algorithm approximate the gradient with just two functions evaluations:

ĝ(θi) =
z(θi + ci∆i)− z(θi − ci)∆i)

2ci



∆−1i1

∆−1i2
...

∆−1iK


(2.40)

where ∆i is a K-dimensional perturbation vector and ∆iK is the ith component

of the ∆k vector; the common numerator in all p components of ĝ(θi) reflects the

simultaneous perturbation of all components in θi in contrast to be component-by-

component perturbations in the standard finite-difference approximation.

SPSA’s convergence is highly dependent on the choice of gain sequences, as well as

the distribution of the perturbations ∆i. The optimal solution should be approached

at rates that are neither too high nor too low, and the objective function must be

several times differentiable in the neighborhood of θ0.

2.2.8.3 The Weighted SPSA algorithm

Through a case study on the whole Singapore expressway system, it was found

that although SPSA algorithm has been successfully applied and it kept its advantage

of highly computationally efficient, the accuracy performance deteriorated when the

scale of the DTA calibration problem became much larger, in terms of network size

and number of considered intervals. It was found that the source of this problem was

not the stochasticity in the DTA models, or the inconsistency in the observed data due

to measurement error, but the way SPSA estimated gradients. The algorithm tries to
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find a direction and amplitude for each parameter value by comparing the influences

to the system caused by perturbing each of the parameter value in two opposite

directions. The influences are determined by the sum of all the distances between

model outputs and corresponding observed measurements. As all the parameters are

perturbed at the same time, the change in a measurement value may or may not

be caused by this specific parameter. When each parameter is highly correlated to

most of the measurements, then this may not be a significant issue. However, in a

real-world traffic system correlations between model parameters and measurements

are often sparse, in terms of both the spatial and temporal dimensions.

In order to improve the performance of SPSA algorithm on DTA calibration,

some successful attempts have been made. Balakrishna and Koutsopoulos (2008)

incorporated transition equations of OD flows in the objective function. The proposed

method does not rely on assignment matrices and it avoids the problem of solving

expensive fixed-point problems. Cipriani et al. (2011) proposed a modification of the

basic SPSA path search optimization method by introducing the assumption that the

starting point is ”near” the optimal one. They introduced a generation constraint,

which allows the algorithm to avoid overestimation problems while the normalization

of link terms of the OF is useful mainly in guarding against underestimation cases.

All the researches however, targeted only the estimation of OD flows. The concern

of algorithm noise could not be addressed with these modifications. It is important

to incorporate into the demand - supply calibration framework the knowledge about

existing correlations in a the system (Lu, 2014).

In the calibration problem of a DTA model there are two types of correlations:

• Spatial correlations: They are mainly decided by the network topology, traffic

conditions and drivers’ route choice behavior.

• Temporal correlations: They are mainly determined based on departure times

and travel times.
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The structure which can integrate into the DTA model the above factors between

each parameter and measurements, is a matrix We. The features and the structure

of the network is known. Assume the time period of interests can be divided into

intervals h = 1,2,...,H. Within an interval, p = 1, 2, ...,P is the index of model

parameter and m = 1,2,...,M is the index of measurement.

We = wp+Px(h1−1),m+Mx(h2−1) =



w1,1 w1,2 · · · w1,M · · · w1,MxH

w2,1 w2,2 · · · w2,M · · · w2,MxH

...
...

...
...

wP,1 wP,2 · · · wP,M · · · wP,MxH

...
...

...
...

wPxH,1 wPxH,2 · · · wPxH,M · · · wPxH,MxH


(2.41)

where wp+Px(h1−1),m+Mx(h2−1) is the relative correlation between the pth model

parameter in interval h1 and the mth measurement in interval h2, ∀p,∀m,∀h1 ∈

h,∀h2 ∈ h.

The weight matrix is a combination of the above matrix and the matrix Wh

(Equation 2.42), which represents the distances between the current parameter values

and the reliable historical parameter values in the objective function.

W = [WeWh] (2.42)

The most challenging part of the calculations is the determination of the influ-

encing measurements. The weight matrix can be calculated before the calibration

process, and as a result W-SPSA maintains SPSA’s advantage of high computational

efficiency. It can be described as a a normalized Jacobi matrix where each element

in the matrix is the normalized value of ∂mi

∂pj
where mi is the ith measurement and pj
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is the jth parameter starting from the first interval.

In this approach, measurements are considered in a weighted manner based on

their relevance to a parameter:

ĝki(ϑ̂k) =

∑D
j=1wji[(e

+
Mkj)

2 − (e−Mkj)
2]

2ck∆ki

=
1

2ck∆ki

W
′

i


(e+Mk1)

2 − (e−Mk1)
2

...

(e+MkD)2 − (e−MkD)2

 (2.43)

Where wji is the element at the jth row and ith column of a D x P weight matrix.

W
′
i is the ith column of the matrix. D is the number of deviations (measurements

plus historical parameter values) and P is the number of parameters.

The frequency of this process depends on the nature of the problem, the stage of

calibration process, and the amount of available computational power. More details

about the WSPSA’ s gradient approximation could be found in Lu (2014).
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2.3 Calibration of traffic simulation models

Each traffic simulation model should be able to produce results close to reality.

Accurate solutions would be achieved through proper calibration of the simulation

parameters as well as validation. Therefore, the calibration algorithms could be ap-

plied to simple equations, such as the speed-density relationship, but also to traffic

simulators. In this section, certain models where the calibration algorithms could be

applied, are described.

2.3.1 Car-Following Models

A car following model controls the behavior of drivers in relation with the pre-

ceding vehicle in the same lane. A vehicle is limited by the movement of the vehicle

in front of it, because driving at the desired speed can lead to a collision. When a

vehicle is unrestricted by a preceding vehicle, it is assumed that it moves freely at the

drivers desired speed. The actions of a vehicle which follows another are defined by

the acceleration of the vehicle, even though in some models like that of Gipps (1981),

the actions of the vehicle following are based on its velocity. Some car following mod-

els describe the behavior of the drivers, only in the case that they are following some

other vehicle, while they include all other situations. Every car following model must

define the state of the vehicle as well as the actions performed in each situation.

Most car following models describe the behavior of drivers in various situations.

A common classification is the following: One situation corresponds to unrestricted

driving state, another to the case where a vehicle follows some other car and one more

for emergency deceleration. The vehicles in unrestricted state have no limitations and

attempt to achieve the desired velocity, while the vehicles which follow another are

limited by its speed. The vehicles in emergency deceleration status, are subject to

sudden braking in order to avoid a collision (Olstam and Tapani , 2004).
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2.3.1.1 Categories of Car-Following Models

According to Olstam and Tapani (2004) the car following models are categorized

by their underlying logic. Those categories are Gazis-Herman-Rothery models, the

models of safety distance, psycho-physical models and the models of fuzzy logic.

The Gazis-Herman-Rothery (GHR) models, or car following models in general,

first appeared in 1958 and have undergone significant improvements since. Those

models check only for the actual behavior of drivers who follow another vehicle. The

relationship between the preceding vehicle and the one following is a function similar

to action-reaction. The acceleration of the superseding vehicle is proportionate to

the speed of the preceding vehicle, the difference between their respective velocities

and the distance between them (Brackstone and McDonald , 1999). The model also

includes three parameters which control the proportions. The model, can be sym-

metrical in the case where the values of the parameters used, are the same for both

the acceleration and deceleration states, or asymmetrical in the case where different

values are used.

In the safety distance models, the driver of the superseding vehicle should always

keep a safety distance relative to the vehicle in front. According to Hoogendoorn and

Bovy (2001), a simple example of a safety distance model is the following: A rule

for the subsequence of a vehicle in a safe distance, requires a distance between the

two vehicles, equal to the length of a vehicle for every ten miles per hour. However,

the safety distance is usually defined by Newtons laws of motion. In some models,

the aforementioned distance is described as the necessary distance in order to avoid a

collision if the preceding vehicle brakes abruptly. The first such model was presented

by Kometani and Sasaki in 1959 (Brackstone and McDonald , 1999). In 1981, Gipps

presented an improved version of the original model; in this version, the vehicle that

follows is not going to collide with the preceding vehicle if their temporal distance is

equal or larger than 3 T /2 (where T is the reaction time) and the estimate of the
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driver of the last vehicle -regarding the deceleration of the vehicle in front-is equal or

larger than the actual deceleration.

In 1963 Michaels presented a new approach of car following models (Brackstone

and McDonald , 1999). The models which use this approach are referred to as psycho-

physical. The aforementioned GHR models, assume that the driver of the last vehicle

reacts to small changes in the relative speed, and in any action of the vehicle in the

front, even if the relative distance is too large or the reaction does not happen as

soon as their relative speed becomes zero. This can be further corrected, either by

extending the GHR models by adding extra states of driving or by using a psycho-

physical model.

The psycho-physical models use the lesser bounds or points at which the driver

changes his behavior; the drivers can react to changes in distance or relative speed,

only when those bounds are met (Leutzbach, 1988). The lowest boundaries and the

states that they define, are presented in a diagram of distance relative to velocity

for a pair of vehicles. One such example is shown in Figure 2.2. Great examples of

psycho-physical models are those developed by Wiedemann and Reiter (1992) and

Fritzsche (1994).

The fuzzy logic models use fuzzy sets in order to quantify concepts such as very

close; such sets are inserted in logical rules, e.g. if very close, then use emergency

braking. In previously mentioned models, the exact speed, distance and everything

else required are assumed to be known; in fuzzy logic models, it is instead assumed

that the drivers are capable of judging if the speed of the preceding vehicle is low,

medium, high or very high. The fuzzy sets are likely to overlap and in such cases, a

probabilistic density function is used as to decide e.g. if the driver believes that the

speed of the vehicle ahead is low or medium. There have been numerous attempts at

creating and using one such model, as for example that by Al-Shihabi and Mourant

(2003).
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Figure 2.2: A psycho-physical car following model Source (Olstam and
Tapani , 2004)

The Gipps model

One of the most widespread models is that of Gipps (1981), which relies on safety

distance. It is used daily as it constitutes the basis of various pieces software of

micro simulation, such as AIMSUN (Barceló and Casas , 2005), DRACULA (Liu,

2010), SIGSIM (Silcock , 1993), and SISTM (Abou-Rahme et al., 2000). According to

this model, the speed of a vehicle (n) that follows another (n-1) is subject to three

limitations. Firstly, the speed of the vehicle n cannot surpass the speed at which its

driver wants to move (Vn). Furthermore, the vehicle accelerates fast initially, as to

approach the desired speed, and after achieving it, its acceleration declines to zero.

In the case where two vehicle are apart one from another, namely in free flow state,

the two aforementioned conditions can be summarized in the following formula:

un(t+ τ) ≤ un(t) + 2.5 · an · τ · (1−
un(t)

Vn
·

√
(0.025 +

un(t)

Vn
)) (2.44)

The third condition is applied in traffic, where vehicles move closer to each other,
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and it defines the behavior of the vehicle in the back while braking. It is assumed

that its driver will adapt its speed, so that a safety distance will be kept, even if the

preceding vehicle suddenly stops. Thus, according to that formula, in the case where

the following vehicles speed is limited by that of its preceding one:

un(t+ τ) ≤ bn · τ +

√
(b2n · τ2 − bn[2 · [xn−1(t)− sn−1 − xn(t)]− un(t) · τ − un−1(t)2

b̂
])

(2.45)

As is apparent from the Equation 2.45, the speed of the following vehicle is af-

fected by the drivers reaction time, the distance between the vehicles, as well as their

respective velocities and braking rates. Additionally, Gipps (1981) notices that it

is necessary to add an extra safety space θ to the drivers reaction time, which will

assure the timely braking of the vehicle, in case where the drivers reaction is delayed.

The safety timeframe is constant and equal to half of the reaction time (τ/2) and is

included in the Equation 2.45 (Rakha et al., 2010). Also, the driver of the vehicle n,

adapts its speed according to the maximum anticipated braking that the n-1 vehicles

driver can induce, but is able to decelerate even more if necessary. As a result, even

if the leading drivers will to break is underestimated, the model is still valid.

Figure 2.3: Car- following notation (Olstam and Tapani , 2004)

Many researchers have attempted to modify the aforementioned model; notewor-

35



thy are the the examinations of Wilson (2001) and Rakha and Wang (2009). However,

the already described remains the most widely used. Its widespread usage is due to

its clear content and definite assumptions by Punzo et al. (2012). A more in depth

analysis of the model and its evolution until today, has been conducted by Punzo

et al. (2012), who consider necessary the calibration of the models parameters.

Additional researches

Konishi et al. (2000) proposed a coupled map (CM) car-following model to de-

scribe the dynamical behavior of an open flow. They also introduced a decentralized

delayed-feedback control scheme in the model for the suppression of traffic jams.

In 2013, A new anticipation optimal velocity model (AOVM) was proposed by con-

sidering anticipation effect on the basis of the full velocity difference model (FVDM)

for car-following theory on single lane (Peng and Cheng , 2013).

Ge et al. (2014) proposed a control method to suppress two-lane traffic congestion.

Their methodology was extended to the FVD (Full velocity difference) car-following

model for two-lane traffic flow. They noted that without control signals, lane changing

behaviors would break the steady states of traffic flow.

Considering high speed following on expressway or highway, an improved car-

following model was developed by Jia et al. (2014). They introduced the parameter

of “variable safety headway distance”.

From the above short sample, but also from other numerous studies, it is under-

stood that many extended traffic models have been developed and will continue to

evolve. It is therefore important to develop a comprehensive methodology that will

allow quick and efficient calibration of models parameters. The simultaneous multi-

ple parameters calibration is helpful, therefore the SPSA could be a fairly promising

algorithm.
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2.3.2 Large-scale simulation systems

Dynamic Traffic Assignment (DTA) models include traffic analysis tools capable of

evaluating travel activities and dynamic network performance for a specific period of

time, or for extended daily hours (Chiu et al., 2011). The range of their possibilities is

quite large and it includes off-line assessment of incident management strategies, on-

line support of real-time emergency response efforts and optimization of the operation

of Traffic Management Centers (TMC) through the provision of real-time predictions

(Antoniou, 2004). More details concerning DTA models could be found in Chapter

V.

DTA models’ value (particularly large-scale simulation systems) depends on their

ability to replicate specific conditions accurately.Balakrishna (2006) noted that “while

advanced DTA models provide realistic abstractions of actual demand and supply

processes, their outputs are governed by a large set of inputs and parameters that

must be estimated before the models are applied. Well-calibrated models are therefore

critical to the success of any DTA application”.

DTA models involve a large amount of parameters that need to be calibrated

using actual traffic data. A successfully calibrated model is able to accurately predict

traffic conditions. Off-line calibration typically results in the creation of a historical

database that ensures the correct replication of average conditions, covering a wide

range of factors such as day of the week, month, season, weather conditions and special

events. Its results should be adjusted in real-time to be sensitive to the variability

of traffic conditions from their average values. On-line calibration uses these results

as a priori estimates. It requires accurate real-time predictions of traffic conditions

on a given day, which are also impacted by factors such as weather, road surface

conditions, traffic composition and incidents.

Parameters of simulation models that need to be calibrated could be divided into

driving behavior parameters (acceleration, lane changing, and intersections models)
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and travel behavior parameters (origin destination (O-D) flows, route choice model)

(Toledo et al., 2003).

Until today a great number of approaches have been developed and successfully

applied for the systematic calibration of demand and supply components in DTA

models. Most of the proposed approaches used a few selected calibration parame-

ters because of the large total number of combinations and the complexity of the

optimization. Two main categories are:

• The iterative demand-supply joint calibration

• The simultaneous demand-supply joint calibration

The first framework combines the independent demand and supply estimation

into a consistent framework. It attempts to consider the interaction between the

two DTA components by iteratively updating them during the calibration process.

One such model was applied on a portion of the City of Calgary road network in

Alberta, Canada by Mahut et al. (2004). The parameters in supply model, together

with other global parameters, were adjusted manually to fit a set of one-hour turning

counts. Hourly OD flows are estimated by matching turning movement counts at

major intersections with their simulated values. Balakrishna (2006) noted that, such

detailed counts, collected for this case study through an extensive survey, are rarely

available.

2.3.2.1 Dynamic traffic assignment framework

Traffic flow phenomena are complex, nonlinear and they are discovered on free-

ways all over the world. Due to the individual reactions of human drivers, vehicles do

not collaborate simply by following the laws of mechanics, but rather show phenom-

ena such as traffic breakdown, hysteresis, stop-and-go traffic and synchronized flow.

Drivers in such systems need to be in constant control of their vehicle. It is crucial
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to make fast, continuous decisions, relating to speed, acceleration and deceleration,

route and lane choice, merging and response to information and control messages.

Congestion is increasing in many urban areas where populations and city economies

are growing and it is likely to continue to increase.Transportation systems nowa-

days are trying to manage the urban traffic congestion with the better management

and utilization of existing infrastructure on a cost-effective basis. Challenges arising

from several emerging policy, real-time applications and planning, have led recent

researches to focus on developing traffic modes which could explain and reproduce

traffic flow phenomena. A great number of cities have placed on key points sensors,

who daily collect and archive time-varying traffic data, forming in this way an in-

tegrated surveillance system of the road network of the region. Within the above

context, the use of detailed simulation-based Dynamic Traffic Assignment (DTA)

models has begun. DTA models include traffic analysis tools capable of evaluating

travel activities and dynamic network performance for a specific period of time, or

for extended daily hours (Chiu et al. (2011)). The range of their possibilities is quite

large and it includes off-line assessment of incident management strategies, on-line

support of real-time emergency response efforts and optimization of the operation of

Traffic Management Centers (TMC) through the provision of real-time predictions

(Antoniou (2004)).

Existing DTA models are generally classified into two broad categories: analytical

models and simulation-based ones. The analytical models can be further catego-

rized as mathematical programming, optimal control, or variational inequality mod-

els. Most analytical DTA models present a number of limitations, because through

some simplifications that inevitably are involved, they cannot sufficiently capture the

true dynamics of traffic conditions such as congestion buildup and dissipation (Kamga

et al. (2011)).

DTA models take into account complex interactions between supply and demand

39



in a transportation network. They implement each time a specific set of modules at

specified frequencies (time-based) or when certain events occur (event-based) (Yang

and Koutsopoulos (1996)).

Real-time DTA systems typically comprise three main functions (Ben-Akiva et al.

(2002)):

• Estimation of the current state of a transportation network

• Prediction of future traffic conditions

• Provision of continuous and up-to-date information to the travelers

They are designed to be an integral part of a TMC. They utilize simultaneously

historical data of the traffic conditions in the network and real-time data from a

surveillance system which is formatted accordingly to the requirements of the system.

A detailed treatment of the demand-supply interactions within a state-of-the-art DTA

system can be found in Ben-Akiva et al. (2002).

For the the first phase, the basic components are (i) historical data which in-

clude time dependent Origin-Destination matrices or link travel times, (ii) a detailed

description of the studied road network and (iii) real time traffic counts from a surveil-

lance system. Through an iterative simulation of demand-supply interaction, realtime

observations from the surveillance system are reproduced.

During the next phase of prediction-based information generation, consistent and

unbiased traffic information for dissemination to travelers is generated. Information

based on predicted network conditions (i.e. anticipatory information) is likely to be

more effective than information based on current traffic conditions because it accounts

for the evolution of traffic conditions over time which is what travelers will experience.
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More details about the demand and supply representation and interaction for the

purposes of estimation and prediction can be found in Ben-Akiva et al. (2002).

2.3.2.2 History

There was always a tendency to explain the dynamics of traffic flow on a complex

network. Many researchers were interested in exploring possible ways of control to

alleviate traffic congestion, a phenomenon that is commonly seen in developed and

developing countries. The first proposed macroscopic traffic flow model is the LWR

model proposed by Lighthill, Whitham, and Richard in 1955 (Lighthill and Whitham

(1955)). This model, and later the more sophisticated ones (LWR-extended models)

could replicate phenomena such as traffic waves and breakdown. However, they dis-

play a lack for the mechanics of producing stop-and-go traffic (Guan et al. (2012)).

Subsequently, early microscopic models, also known as following-the-leader models,

were developed in the 1960s. Two decades later, the cellular automata (CA) model

was presented, as another type of microscopic model.

Mathematical programming DTA models, which represent the problem in a dis-

credited time-setting, have started to be formulated by Merchart and Nemhauser

in the late 1970s. The formulation was limited to the deterministic, fixed-demand,

single-destination, single-commodity, system optimal case. Extensive studies have

shown that the mathematical models have significant limitations for developing de-

ployable models for general networks. According to Peeta and Ziliaskopoulos (2001),

these DTA formulations tend to present many obstacles in:

• the use of link performance and/or link exit functions

• holding-back of traffic

• efficient solutions for real-time deployment in large-scale traffic networks and
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• a clear understanding of solution properties for realistic problem scenarios

Within the last decades optimal control and variational inequality models have

also been developed. The first category includes DTA formulations, where the O-

D trip rates and the link flows are sought as continuous functions of time, and the

second category consists of mechanisms which address equilibrium and equivalent

optimization problems. A comprehensive review about these two categories can be

found in Peeta and Ziliaskopoulos (2001).

he fourth and most relevant category with the subject of this research is that of

simulation-based DTA models. Studies have been carried out with the use of these

specific models for more than 40 years.Considering the dynamic nature of the network

under time-varying demands, simulation-based DTA models are able to compute the

spatio-temporal path for every vehicle, while accounting for real-time driver behavior

(Kamga et al. (2011)). For the implementation of these tasks, a set of vehicles and

their travel paths are required. The simulator provides the link travel times, which

are then used for the calculation of the time-dependent shortest paths. Taking into

consideration the completed computations, the vehicles are loaded onto the network.

This process is repeated for as many times as necessary, as reported by the user-

specified convergence criterion.

There have been many efforts to develop simulation models for studying networks

under Intelligent Transportation Systems (ITS). An important first attempt was made

with INTEGRATION (Van Aerde (1999)), a model developed at the Queens Univer-

sity. It is a fully microscopic simulation model that tracks the longitudinal and

lateral movements of individual vehicles to the resolution of a deci-second. Its car-

following algorithm takes into consideration the individual vehicle speeds based on

the macroscopic parameters of free-flow speed, speed at capacity and jam density.

INTEGRATION uses up to five different driver/vehicle types and in this way, it has
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the ability to represent different routing behavior or access privileges to real-time

traffic conditions.

MITSIM (MIcroscopic Traffic SIMulator) has been proposed by Massachusetts

Institute of Technology as a new alternative for modeling traffic flows in networks

involving advanced traffic control and route guidance systems (Yang and Koutsopou-

los (1996)). It can simulate the state of the network in detail and for the vehicle

movements it uses car following, lane changing signal and event responding logic.

It has been validated in a number of studies, such as in Stockholm, Sweden and in

Boston. (Ben-Akiva et al. (2010), Toledo et al. (2003)). It accepts traffic controls

and routing information as input from traffic management systems and maintains the

state of traffic signals and signs in the simulated network.

Another important effort to find solutions for O-D demand with fixed departure

times was made by Mahmassani and Peeta using DYNASMART (Dynamic Network

Assignment Simulation Model for Advanced Road Telematics), a mesoscopic traffic

simulator which was designed at the Center of Transportation Research at the Uni-

versity of Texas. It is developed to be used as an assignment and simulation model

for ITS. Traffic signals, ramp meters and incidents can be studied, using all of the

tools provided by DYNASMART. It has already been used to study the core net-

work of Austin, Texas and the network of Anaheim, California. Further development

of this model has led to the development of DYNASMART-X a traffic assignment

and optimization tool (Boxill and Yu (2000)). It performs traffic routing functions

in different modes, including predictive, decentralized reactive (when local network

controllers route vehicles by reacting to events such as incidents), and hybrid (a

combination of the centralized and decentralized approaches) (Balakrishna (2006)).

DYNASMART-P is a similar variant of the real-time DYNASMART-X system.

Some of the main problems that this deterministic DTA models present is the

need for a-priori knowledge of O-D demands for the whole area of interest, and the

43



assumption of users, who respond ideally to the information provided, such as mes-

sages from the Advanced Traveler Information Systems (ATIS). Based on the above,

Mahmassani (1993) managed to introduce more categories of users, with different

classes of information, availability, information supply strategy, and driver response

to the information provided.

In the mid 1990s other research studies followed which developed rolling horizon

DTA models as an effort to include real-time variations in network conditions. They

contributed significantly to the increase of computational efficiency for the sake of

real-time tractability (Peeta and Ziliaskopoulos (2001)).

Ben-Akiva et al. (1997) proposed DynaMIT (Dynamic Network Assignment for the

Management of Information to Travelers) as a real time dynamic traffic assignment

system that provides traffic predictions and travel guidance. Utilizing information

from the traffic surveillance system, it achieves the creation of user-optimal guid-

ance which takes into account estimated network conditions and traveler response to

information. A detailed description of the its methodology, will be presented in ??.

DynaMIT-R, developed for real-time applications, synthesizes estimates of current

network conditions from historical information along with real-time surveillance data.

Future network state, which is represented by OD predictions, is assigned using a

mesoscopic supply simulator to assess network performance in the near future.

A commercial network planning tool equipped to perform iterative simulations

towards a dynamic user equilibrium solution is the developed by INRO, Dynameq

(Dynamic Equilibrium). Innovative microscopic traffic models and route-choice algo-

rithms were used to identify the best paths on the network for each origin-destination

pair (Mahut et al. (2005)).

In 2000 Ziliaskopoulos and Wallet introduced an internet-based GIS system which

incorporates data and models into the same framework. In their proposed system

RouteSIM is being used, a mesoscopic model which focuses on traffic distribution.
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The simulation-based DTA model is able to capture many details of the real network,

such as traffic signals, by using time-dependent cell capacities and saturation flow

rates.

2.3.2.3 Emerging / Future perspectives

The current versions of simulation-based traffic prediction state models, such as

DynaMIT, DYNASMART and DynusT, provide well-developed tools that can be

readily deployed for a variety of applications. Next generation real-time DTA models

will be enriched with more information such as the way that trips are generated, and

the modes (e.g. public transit) are represented. Additionally, dynamic pricing of the

transportation network, incorporation of commercial vehicles, and the response to

anticipated personal devices as source and distributors of information will be incor-

porated.

Milkovits et al. (2010) proposed DynaMIT 2.0 as the next generation real-time

dynamic traffic assignment system. Accurate state estimation and prediction could

be achieved in multiple dimensions.

Focusing on the activity-based modeling, DynaMIT 2.0 moves from static OD-

based demand to activity-based demand. Each agent can generate a daily activity

plan, which consists of multiple activities, into a single trip or tour. Consequently,

during a day, the agent can change an activity choice, based on the traffic conditions,

without affecting previous or future trips-decisions during a day. A characteristic ex-

ample could be the fact that someone may not make a shopping trip in the morning

when traffic is heavy, but instead run the errand when they go for lunch. It is a sig-

nificant advantage to allow higher flexibility in traveler choice, including not making

the trip at all. Bowman and Ben-Akiva (2001) proposed a model designed to cap-

ture interactions among an individual’s decisions throughout a 24 h day by explicitly

representing tours and their interrelationships in an activity pattern. An interesting
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example of an activity-based transportation model, developed by researchers at ETH

in Zurich is MATSIM (www.matsim.org). An important detail is the fact that it does

not use real-time data.

DynaMIT 2.0 will also include the parameter of multi-modal network. MILA-

TRAS (MIcrosimulation Learning-based Approach for Transit Assignment) is a char-

acteristic example of this criterion, as it is a high-fidelity agent-based transit choice

model, using ArcGIS and Paramics, which provides the transit network and stochastic

rider experience respectively. Alternative travel options, such as public transportation

and non-private auto transport modes should be an integral part of supply and de-

mand modeling (Milkovits et al. (2010)), because they represent different interactions

with traffic, weather and passengers demand.

Personal smart-phones and/or vehicle navigators are an integral part of everyday

life for the majority of people. Many emerging smart-phone applications require

position information to provide location-based or context-aware services. GPS is

often preferred over its alternatives such as GSM/WiFi based positioning systems

because it is known to be more accurate. All these data could be used as increased

traffic and mobility data, because traditional self-reported travel surveys typically

suffer from problems such as limited sample size, under-reporting of total completed

trips, imprecision of trip start/end times etc. (Chen et al. (2010)). Additionally,

smart-phone could be used as a mobility advisor. Travelers could be alerted to traffic

levels and incident locations. DynaMIT 2.0 will response to all these described tools,

increasing with this way significantly its accuracy.

Finally, DynaMIT 2.0 will take into account the commercial vehicles, as they

account for almost 10% of Vehicle Kilometer Traveled (VKT) in an urban network,

and the reaction to congestion pricing, as accurate prediction is critical for setting

the appropriate price points (Milkovits et al. (2010)).
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2.3.2.4 Estimation of supply models

DTA systems have macroscopic or microscopic supply models. But especially

the mesoscopic systems, such as DynaMIT, have microscopic demand models and

macroscopic supply models. The second one focuses mainly on capacities and link-

based speed-density models. The typical data used for this task are sensor records

of at least two of the three primary traffic descriptors: speeds, flows (or counts) and

densities.

Until today many methodologies of supply calibration have been developed and

studied. Leclercq (2005) used data from arterial segments in Toulouse, France for the

estimation of the four parameters of a two-part flow-density function. He worked on

the optimization of the fit to observed sensor flows, with the fitted flows obtained

from an aggregate relationship comprised of a parabolic ”free-flow” part and a linear

congested regime. Van Aerde and Rakha (1996) calibrated the speed-flow profiles by

fitting data form loop detectors on I-4 near Orlando, Florida.

Some other researchers focused on the independent estimation of subsets of supply

parameters, such as Muñoz et al. (2004), who analyzed a calibration methodology for

a modified cell transmission model (MCTM), applied to a 14-mile westbound stretch

of the I-210 freeway in southern California. Free-flow speeds, congestion-wave speeds

and jam densities were determined, using a least-squares data fitting approach. Yue

and Yu (2000) succeeded in adjusting the free-flow travel times and turning fractions

to match detector count data through the calibration of the EMME/2 and QRS II

models for South Missouri City, a small suburban network outside the city of Houston,

TX.

Kundie (2002) introduced the implementation of SPSA (Simultaneous Perturba-

tion Stochastic Approximation) for the approximation of the gradient of the objective

function through finite differences, and the calibration of the supply models within a

mesoscopic DTA system. Balakrishna et al. (2007), exploiting the above methodol-
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ogy, presented a systematic offline DTA calibration methodology for all demand-and-

supply inputs and parameters simultaneously. Optimization algorithms were imple-

mented successfully on complex and large-scale calibration problems, using real-world

sensor count and speed data from a large urban network in Los Angeles, California.

2.3.2.5 OD Estimation and Prediction

The dynamic traffic management systems include dynamic driver information and

adaptive traffic control. A DTA system integrates historical data and information in

order to estimate the current state of the studied network and provide prediction-

based information to the travelers. Intelligent transportation systems (ITS) are being

widely deployed in the context of achieving the above objectives. Fair use of advanced

traffic management systems (ATMS), advanced traveler information systems (ATIS)

and advanced public transportation systems (APTS) allows the maximization of ca-

pacity and efficiency of current transportation modes, minimization of delays and

general improvement of system reliability. An interesting summary of studies of

ATIS time savings can be found in Toledo and Beinhaker (2006). Study results with

real-world date from Los Angeles, California show that ATIS-based routing may lead

to travel times saving of up to 14%, and reduction of travel time variability by up to

50%, depending on the type of information.

The ability of full-time surveillance of the current state of a road network is sup-

ported by sophisticated sensor networks which automatically and routinely collect

and archive time-varying traffic data. Data collection technologies provide the op-

portunity for acquiring traffic data at a variety of resolutions to match the needs for

both traffic management and control applications. Traffic sensors are categorized ac-

cording to their functionality as point, point-to-point and area-wide (Antoniou et al.

(2011)). Any traffic modeling application is able to accept and process a wealth of

information from different traffic data types. As a result, the accuracy of each model
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could be significantly enhanced. Point to point travel times are valuable for assessing

and validating travel times, while point flow measurements are beneficial for the pro-

vided accurate flow data. Video cameras, placed a various intersections can inform in

collaboration whith an image processing software about the number of vehicles which

cross a studied area.

Recently, wireless communication infrastructures and navigation technologies have

modified in a significant degree the manner by which we conceive data collection and

data coverage. These technologies collect vehicle positions, infer relevant information

concerning vehicular kinematic characteristics and congestion and supply updated

traffic information to all drivers (Marfia et al. (2013)). The processed data is dissem-

inated to users using various media, such as variable message signs (VMS), web sites

or through wireless communication with the in-vehicle navigation systems.

The procedure of estimating and predicting OD flows benefits from surveillance

data. Many effective an theoretically consistent methodologies using aggregate data

such as traffic counts and/or OD demand counts have been proposed.The effectiveness

of the each application depends on the network configuration as well as the sensor

infrastructure. Relevant information can yield a system which is based on video cam-

eras placed at various intersections and software with image processing capabilities

to match the plate numbers of vehicles as they cross equipped intersections. A re-

search which utilizes the data collected from the described plate matching system was

implemented by Ma and Koutsopoulos (2008) in Stockholm, Sweden for the on-line

estimation and prediction of travel times in urban areas. OD estimation Traffic

state estimation task resolves the problem where the number of traffic flow variables

to be estimated may be much larger than the number of variables that are directly

measured. Previous work on inference for OD matrices from link count data has led to

two basic directions, the static and the dynamic OD estimation. In the first case the
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average OD flows are estimated taking into account average traffic flows measured in

the same period over some network links. Maher (1983) considered using a Bayesian

approach to combine prior information on an OD matrix with current observations of

traffic flows on monitored links. Cascetta (1984) presented a generalized least squares

estimator of an OD matrix. Hazelton (2000) has developed a methodology for esti-

mating origin-destination matrices from link flows on uncongested network using a

statistical model of the transport system with Poisson distributed OD flows. In an-

other research Sherali et al. (2003) exploited shortest path network flow sub-problems

for the estimation of an OD trip-table, given incomplete link flow information on the

network. Li (2005) using the Bayesian approach estimated, reconstructed and pre-

dicted the population means of traffic flows.

More attention is being paid though to the need of determining a ”dynamic” O-

D matrix. Using time-varying traffic counts many researchers have tried to propose

solutions to the problem of estimating time-varying OD flows or average OD flows.

In the first case, OD matrices, each corresponding to a time interval, are used for

various predictive network control problems such as route guidance and congestion

prevention. DYNA was one of the first research projects which used time dependent

matrices, for the prediction of traffic conditions in real time on part of the Dutch

motorway network. The model system contained a statistical model for noisy traffic

data filtering, a dynamic traffic assignment model for 15-60 min. predictions, and

a real-time OD matrix prediction model, which was merged with the second one,

when the time horizons overlap (Ben-Akiva et al. (1995)). Another important imple-

mentation was the study of Cascetta et al. (1993), who proposed a simultaneous and

sequential estimator (namely Generalized Least Squares) utilizing the Italian Brescia-

Padua motorway. It was proved that estimates without a priori information could

give significant results. Additional relevant examples of the least square models could

be found in the studies of Sherali and Park (2001) and Lin and Chang (2007).
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The simultaneous estimation of OD flows involves the calculation, storage and

inversion of a large augmented assignment matrix. Several studies (Cascetta and

Russo (1997), Bierlaire and Crittin (2004)) have shown that the implementation is

too computationally intensive on large networks. Toledo et al. (2003) proposed a a

sequential estimation technique, which exploits the sparse structure of the assignment

matrix to successfully deal with this limitation.

The sequential estimator optimizes fir the unknown OD flows one interval at a

time:

x̂h = argxhmin[f1(xh, x
a
h) + f2(yh, ŷh)] (2.46)

where xh is the current best solution; xah are a priori flows (extracted from other

studies, or set to x̂h−1); ŷh are the fitted counts obtained by assigning xh to the

network; f1(·) and f2(·) are functions that measure the distance between the estimated

or fitted quantities from their a priori or observed values.

A linear assignment matrix mapping is used when a measurement equation links

the OD flows xh with the counts yh:

yh =
h∑

p=h−p′
aphxp + vh (2.47)

where the elements of aph specify the fractions of each OD flow in xp (departing

during interval p ) that arrive at every sensor location during interval h. vh represents

the error term. The symbol p’ indicates the number of necessary intervals for the

longest trip on the network. It depends on the network topology and the congestion

levels.

Since the sequential estimator constrains the flows in prior intervals to their best

estimates, the measurement equation may be re-written as:
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ȳh = yh −
h∑

p=h−p′
aphx̂p = ahhxh + vh (2.48)

Consistent with the GLS formulation, Equations 2.46 and 2.48 yield the following

estimator:

x̂h = argxhmin[(xh − xah)′W−1
h (xh − xah) + (ȳh − ahhxh)′R−1h (ȳh − ahhxh)] (2.49)

where W−1
h and R−1h are error variance-covariance matrices. If there are no reli-

able estimates of them, it is proposed to set them to identity matrices of appropriate

dimensions. Finally, the above optimization is constrained so that xh > 0. OD pre-

diction The prediction of origin-destination flows represents an important step of

better management of the current road network. This process is one of the key com-

ponents of dynamic traffic assignment which will contribute to the efficient utilization

of existing capacities (Ashok and Ben-Akiva (2000)). Since the early 1980s, several

modeling approaches have been used. Wang et al. (2006) presented RENAISSANCE,

a real-time freeway network surveillance tool, which suggests the use of Kalman Filter

for the state prediction. Similar methodology followed Liu et al. (2006) for the pre-

diction of urban arterial travel time. Literature has also shown that neural networks

are a promising alternative for modeling and predicting traffic parameters, because

almost any function can be approximated. Vlahogianni et al. (2005, 2008) concen-

trated on the development of optimized neural network models to forecast traffic flow

in highly congested urban signalized arterials. Their proposed multilayer traffic pat-

tern recognition strategy is able to identify transitional traffic conditions and generate

clusters of traffic patterns with similar statistical characteristics. Dunne and Ghosh

(2011) demonstrated the effect of data aggregation level on forecasting model per-
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formance, because it has been found that it eliminates variation in data and alters

most properties, including non-stationarity and nonlinearity, that exist at the dis-

aggregated level (Vlahogianni and Karlaftis (2011)). More details about the Neural

Network and Artificial Intelligence (AI) applications could be found in Vlahogianni

et al. (2014); Adeli (2001)).
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CHAPTER III

Methodology

This chapter begins by outlining the various model inputs and parameters. Fur-

thermore, the SPSA algorithm is thoroughly analyzed. Some methods of SPSA’s

performance evaluation are presented.

3.1 Calibration variables

Most of the problems that need to be calibrated are highly non-linear. The desired

outcome is usually a result of multiple algorithms’ and models’ processes. For a simple

static assignment problem, i.e. the calibration of the speed-density relationship::

v = vmax[1− (
k − kmin
kjam

)β]α (3.1)

the calibrated variables, that will be included in the vector θ are: (i) vmax =

the speed on the segment under free-flow traffic conditions, (ii) kmin = the mini-

mum density beyond which free-flow conditions begin to break down, (iii) kjam = the

jam density, and (iv) α, β = segment-specific coefficients. A-priori estimates of the

parameter values are necessary and could be obtained by fitting the speed-density

relationship to an initial set of data using non-linear least squares (Antoniou et al.,

55



2007b).

For a DTA model the variables collection is more complicated. The critical set of

data may be grouped into demand and supply-side parameters. Travel time, fraction

of freeway links, number of left turns, number of signalized intersections and the

frequency of freeway-arterial changes are some coefficients that represent the basic

demand parameters in a route-choice model (Antoniou, 2004). The supply variables

for microscopic models are more complex and may include car-following and lane

changing parameters, thus explaining individual driver decisions and maneuvers. For

mesoscopic and macroscopic models, link / segment capacities and speed-density

relationships are more likely to be included.

3.2 Summary display of SPSA

The SPSA algorithm is a member of the iterative stochastic optimization algo-

rithms family. When the objective function has not an analytical form, the SPSA

is s an ideal solution for optimization problems. It iteratively traces a sequence of

parameter estimates that converge the objective functions gradient to zero.

The following step-by-step summary display how SPSA iteratively produces a

sequence of estimates:

1. The process is initialized (i = 0) so that θi = θ0, a K-dimensional vector of apriori

values. Additionally, SPSA algorithm’s non-negative coefficients α, A, c, a and

γ are picked according to the characteristics of the problem. Some guidance on

picking these coefficients in a practically effective manner is provided by Spall

(Spall , 1998a).

2. In this step, the number of gradient replications grad rep for obtaining the

average gradient estimate at θi is chosen.
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3. The iteration counter is increased by one unit and the step sizes αi and ci are

calculated as αi = a/(A+ k + i)α and ci = c/(k + i)γ.

4. A K-dimensional vector ∆i of independent random perturbations is generated

by Monte Carlo. Each element ∆ik,k = 1,2,...,K, is drawn from a probability

distribution that is symmetrically distributed about zero, and satisfies the con-

ditions that both |∆ik| and E
∣∣∆−1ik ∣∣ are bounded above by constants. A simple

choice for each component of ∆ik, is to use the Bernoulli ±1 with equal prob-

ability. Note that the inverse moment condition above precludes the use of the

uniform or normal distributions.

5. The loss function is evaluated at two points, by obtaining two measurements

based on the simultaneous perturbation on ”either side” of θi. These points

correspond to θi+ = θi + ci∆i and θi− = θi− ci∆i. Each point is checked if it is

between the lower and upper bound constraints before function evaluation.

6. The K-dimensional gradient vector is approximated as

ĝ(θi) =
z(θi+)− z(θi−)

2ci



∆−1i1

∆−1i2
...

∆−1iK


(3.2)

7. Steps 4 to 6 are repeated grad rep times, using independent ∆i draws, and an

average gradient vector for θi is computed.

8. Through the application of Equation 2.38, an updated solution point θi+1 is

obtained.
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9. Iteration or termination of the algorithm, depending on the convergence. Con-

vergence is declared when θi and the corresponding function value z(θi) stabilize

across several iterations.

SPSA provides a huge saving of computational time due to its constant number

of perturbations for the gradient approximation. SPSA performs as well as FDSA

(Figure 3.1). With no or little noise, FDSA is expected to follow the true descent

to the optimal. SPSA may have approximated gradients that differ from the true

gradients, but they are almost unbiased.

Figure 3.1: Relative paths of SPSA and FDSA in a 2 parameter problem

SPSA and its variations have been already applied in the field of DTA calibration.

Dynamic emission models were calibrated using SPSA by Huang (2010). The re-

searcher used a microscopic traffic simulator and the aggregate estimation ARTEMIS

as a standard reference. A demonstration of SPSA’s performance was also presented

by Paz et al. (2012). They calibrated simultaneously all the parameters that COR-

SIM models use.
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3.3 Choice of non-negative coefficients

The performance of SPSA depends on the choice of the gain sequences to a con-

siderable extent. There are great chances that the method will not converge to the

optimal solution, if a wrong combination of system parameters has been assigned. In

general, SPSA can easily be entrapped in a local minimum, and not depart from it

in order to approach the optimal solution.

Spall (1998a) highlights some details, that someone sould take into account for

the efficient implementation of SPSA. Firstly, for poor quality measurements of L(θ),

it is necessary to choose a smaller α and c, than in a low-noise setting. Giving to

parameter α a value less than “1”, usually yields better finite-sample performance

through maintaining a larger step size. However, Balakrishna (2006) noted, that if a

too large value is chosen, then the SPSA may overlook a nearby solution and venture

too far away. The parameter c should be set at a level approximately equal to the

standard deviation of the measurement noise in y(θ) in order to keep the p elements

of ĝk(θ̂k) form getting excessively large in magnitude. A large c may lead parameters

components to their bounds really fast, thus rendering the gradient approximations

invalid (Balakrishna, 2006). It is also noted in Spall (1998a), that the values of α and

A can be chosen together to ensure that the algorithm will perform effectively.

3.4 Objective Function

Calibration involves the use of an objective function to determine the model cost

(model-data errors). It is the function of differences between observations and simu-

lations. Through an optimization procedure it is minimized or maximized, depending

on the requirements of the specific application (Legates and McCabe, 1999). Some

of the objective functions that were used for model calibration in hydrology are the

mean square error, the absolute mean/maximum error, residual bias and the Nash
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objective function (Boyle et al., 2000; Diskin and Simon, 1977; Gupta et al., 1998;

Servat and Dezetter , 1991; Yapo et al., 1998).

According to Wu and Liu (2014), the sum of square errors (SSR) is the most com-

monly used objective function for a variety of optimization processes even in recent

years. It emphasizes the extreme values of a set of observation data and neglects

the low values during model calibration, because squaring calculation usually means

a relatively larger weight for peak or higher values. The correlation-based measures

characterized by “square error” such as square correlation coefficient (r2) and Nash-

Sutcliffe Efficiency (NSE) are oversensitive to extreme values (outliers) and insensitive

to additive and proportional differences between observations and simulations.

3.5 Validation process

Different guidelines, protocols and papers provide recommendations for calibration

method validation, including the linearity assessment. Validation of the model is an

evaluation of the performance of the model calibration obtained through a comparison

of the results from the calibrated model and the observations/ measurements in real

traffic conditions (Schneeberger , 2002) or “verification that model behavior accurately

represents the real world system modeled” (Daamen et al., 2014). The majority of

them describe the Ordinary Least Squares Method (OLSM) as the statistical method

to be used. Fitting a calibration function by OLSM requires several assumptions

related to the residuals (normality, homoscedasticity and independency) and to the

model. The linear first-order model for OLSM is described in detail in de Souza and

Junqueira (2005).

The OLSM has the inconvenience of being very sensitive to the presence of outliers

and/or high-leverage points. If only a few calibration points are available, a plot of

the residuals would reveal a trend, if any is present.

The validation of the procedure is achieved through the following tests for residuals
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assumptions (de Souza and Junqueira, 2005):

• Normality (Ryan-Joiner test)

• Homoscedasticity (Brown-Forsythe test)

• Independency (Durbin-Watson test)

The Root Mean Square Error (RMSE) and Root Mean Square Normalized error

(RMSN) statistics are also some useful tools for the analysis of the performance of the

various calibration estimators (Balakrishna, 2006; Antoniou, 2004). They measure

the performance of the estimators in replicating the observed data.

RMSE =

√∑S
i=1 (yi − ŷi)2

S
(3.3)

RMSN =

√
S
∑S

i=1 (yi − ŷi)2∑S
i=1 yi

(3.4)

where yi is the ith “true” parameter value, and ŷi the estimated quantity.
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CHAPTER IV

Case Studies

This chapter describes tree small case studies, which were implemented for the

understanding of SPSA’s algorithm behavior. The choice of non-negative coefficients

is examined in detail. In each application, all results are presented and evaluated.

4.1 Objectives

The primary objectives of these case studies are to:

• operationalize SPSA’s calibration procedure, as it was described in Chapter III

• evaluate SPSA’s performance, depending on the choice of non-negative coeffi-

cients

• record potential problems / SPSA’s failures

• suggest solutions to the problems that have been occurred

4.2 A simple static assignment problem

In the context of understanding how SPSA works, as well as how it is affected

by the values of non-negative coefficients, the algorithm was applied to a problem

of stochastic transportation network analysis. Based on Ozguven and Ozbay (2008)
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research, a simple network with three links between one origin and one destination

node was used (Figure 5.1). Each link has a predefined travel time function:

t(θ1) = 10(1 + 0.15(
θ1

200
)4) (4.1)

t(θ2) = 20(1 + 0.15(
θ2

400
)4) (4.2)

t(θ3) = 25(1 + 0.15(
θ3

300
)4) (4.3)

Figure 4.1: Network for Stochastic Approximation Analysis (Ozguven and
Ozbay , 2008)

This simple network was chosen, because the deterministic optimal solution was

known (θ* = [358, 465, 177]), considering as total demand 1000 trips from O to D.

Knowing, therefore, the equilibrium values of the system, and in order to understand

how fast the optimization algorithm could perform, a normally random noise was

injected into the optimum solution. The amount of random perturbations is assumed

to follow a uniform distribution with ±30% range from the true equilibrium values.

The aim of the stochastic optimization algorithm is the minimization of the loss

function, which in this specific implementation is represented by the equation:
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y(θ ± ck ∗∆k) = ti(θi,c)− ti(θ ± ck ∗∆k) (4.4)

where ti represents the travel time function, θi,c the already known optimal solution

and ti(θ ± ck ∗∆k) the randomly perturbed measurements of ti(•).

The root mean square normalized error (RMSN) was used to assess the perfor-

mance of SPSA in replicating the initial correct data:

RMSN =

√
S
∑S

i=1 (yi − ŷi)2∑S
i=1 yi

(4.5)

where yi is the ith observed measurement (in this case, the ”true” parameter

value), and ŷi the corresponding simulated (in this case estimated) quantity.

4.2.1 SPSA run following Spall’s guidelines

Following the guidelines of Ozguven and Ozbay (2008), the performance is initially

analyzed using the parameters A = 20, α = 0.602, c =1, a = 0.027 and γ = 0.101.

The algorithm does not require complex and time-consuming calculations, so it was

chosen to implement a total of 10,000 iterations, in order to depict SPSA’s behavior.

Figure 4.2 shows how fast the algorithm approximates the optimal solution. It can be

easily observed that in the first two series of iterations, its speed is higher. However,

it is not is not actually successful. More iterations reduce the distance between the

noisy and the equilibrium values of the system as Table 4.1 shows, but SPSA’s speed

is extremely low.
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Figure 4.2: RMSN values using the guidelines of Ozguven and Ozbay
(2008)

Figure 4.3: RMSN values using the guidelines of Ozguven and Ozbay
(2008)
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no.Iterations RMSN Improvement (%)
1 0.06175 -

100 0.06170 0.07
200 0.06168 0.10
300 0.06167 0.13
400 0.06166 0.15
1000 0.06160 0.23
2000 0.06155 0.32
4000 0.06148 0.44
10000 0.06135 0.65
100000 0.06071 1.67

Table 4.1: Summary of first implementations

In the context of reducing the errors of SPSA’s algorithm, the optimisation prob-

lem was a bit changed. More specifically, the parameters of θ were reduced to two,

replacing the third parameter with the equation:

θ3 = 1000− θ1 − θ2 (4.6)

Under the new circumstances, running again the algorithm seems to give much

better results (see Figure 4.4). The algorithm approximates faster the optimum so-

lution. In 1000 iterations, the algorithm gives results that the previous format had

not presented even at 10000 iterations. This improvement appears to be due to the

fact that the true value of the third parameter is considerably smaller than the other

two, therefore, the algorithm is not able to perturb correctly all at once.
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Figure 4.4: New RMSN values using the guidelines of Ozguven and Ozbay
(2008)

The initial RMSN of the previous execution was small, therefore some small

changes in SPSA’s speed may not be depicted. For more distinct differences be-

tween the solutions that the SPSA gives, the initial values were changed to θ* = [200,

300].

4.2.2 Sensitivity analysis of parameter c

As it is already mentioned, the parameter c plays a significant role in the speed of

approaching the optimal solution. The SPSA algorithm were executed changing its

value (specifically from c=0.01 to c=10 with a step=0.5). The number of iterations

was reduced to 1000, because it is generally accepted that the SPSA algorithm is

supposed to be able to approach the optimum solution in less than 100 iterations.

Every 1000 iterations the c parameter changes and the algorithm starts over from the

initial values of θ. The most characteristic results are presented in Figure 4.5, where
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it was attempted to illustrate the curves that correspond to the 6 different values

of the parameter one next to the other. The curves look quite similar; therefore, it

seems that the parameter in this application does not optimize the result.
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Figure 4.5: RMSN values using different values of c
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4.2.3 Sensitivity analysis of parameter a

Advancing the process of finding the best values of SPSA’s implementation, the

same procedure was repeated, testing this time the parameter a. The range of values

was selected to be among [ 0.01 - 10.0]. The results are presented in Figure 4.7.

From this new diagram, it is evident, how much the performance of the algorithm

can be affected by the input values. For the same number of iterations (n=1000), the

RMSN can decrease either fast or slow. Setting “a” between 8.00 and 15.00 could

give the best possible performance. The algorithm needs less than 40 iterations to

reach RMSN=0.01. Table 4.2 presents the range of improvement which could be

accomplished, as well as the iterations that SPSA needs for a final RMSN=0.01. It

is noticed that for a value greater than 15, the results start to get worse.
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Figure 4.6: RMSN values using different values of a
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Value of a RMSN No. Iterations until RMSN=0.01
0.01 0,3664 More than 1000
1.00 0.0334 More than 1000
2.00 0.0056 953
3.00 0.0019 384
4.00 0.0012 224
5.00 0.0010 100
6.00 0.0010 78
7.00 0.0010 86
8.00 0.0010 35
9.00 0.0010 32
10.00 0.0010 28
15.00 0.0010 9
20.00 0.0010 21
30.00 0.41 More than 1000
50.00 0.44 More than 1000

Table 4.2: Summary of first implementations

The first experiment was repeated, giving this time to the parameter “a” the value

of 10. The results are shown in Figure 4.7. Once again, the curves look similar and

the parameter c does not seem to affect SPSA’s convergence to smaller RMSN.
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Figure 4.7: RMSN values using different values of c and a=10
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Sometimes, the increase of iterations leads to the increase of the final error of the

algorithm. If the only stopping criterion is the maximum allowed number of iterations,

then the implementation may fail. It is important to use convergence criteria which

will check the relative difference between the consecutive iterates obtained. That is:

∣∣∣θ̂k+1 − θ̂k
∣∣∣ < ε (4.7)

where ε is a small predefined number.

4.2.4 Sensitivity analysis of parameter A

For different values of A, a=10, c=1 (keeping the guidelines of Ozguven and Ozbay

(2008)) and for 1000 iterations, the SPSA algorithm presents the results shown in

Figure 4.8 and in Figure 4.9. It seems that larger values of A delay the optimal

solution approximation. This result also supports the previous observations on the

variable a. Smaller A leads to SPSA’ s failure, because αi = a/(A+ k + i)α becomes

really high for the necessary perturbation, and the algorithm cannot return close to

the optimal solution. From the Table 4.4 it is summarized that the value A=10 could

be chosen as the optimal.
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Figure 4.8: RMSN for different values of A, c=1 and a=10

76



Figure 4.9: RMSN for different values of A, c=1 and a=10
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Value of A Final RMSN No. Iterations until RMSN=0.01
1 0.001 40
3 0.001 28
5 0.001 28
8 0.001 37
10 0.001 3
20 0.001 44
30 0.001 57
40 0.001 85
50 0.001 57
60 0.001 76

Table 4.3: Summary of implementations (for different A)

4.2.5 Sensitivity analysis of parameter gamma

The parameter gamma appear to also affect significantly the final RMSN value

(see Figure 4.10). Table 4.4 presents in detail all sets of SPSA’s implementations.

Values close to 0.01 and 0.07 tend to increase algorithm’s speed. Therefore, gamma

= 0.01 could be chosen for the following SPSA implementations.
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Figure 4.10: RMSN for different values of gamma, A=10, c=1 and a=10
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Value of gamma Final RMSN No. Iterations until RMSN=0.01
0.001 0.001 23
0.01 0.001 5
0.02 0.002 40
0.03 0.001 30
0.04 0.001 24
0.05 0.001 14
0.06 0.001 19
0.07 0.001 3
0.08 0.001 16
0.09 0.001 29
0.1 0.002 42

Table 4.4: Summary of implementations (for different gamma)

4.2.6 Sensitivity analysis of parameter alpha

Finally, parameter alpha’s behavior is studied. After a few more iterations, it is

concluded that some values of alpha tend to decrease SPSA’s speed to the optimal

solution (see Figure 4.11). More specifically, values closer to 0.1 or 1 tend tofind it

approach with difficulty the optimal solution in the early iterations. Furthermore, it

is observed that very small values of alpha, lead to SPSA’s failure.

It is therefore clear that the algorithm can give completely different results, de-

pending on the values given to the variables. Each one affects differently the final

RMSN values, so it is important to know their behavior, before SPSA’s implementa-

tion.
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Figure 4.11: RMSN for different values of alpha, gamma=0.01, A=10, c=1
and a=10
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A simultaneous sensitivity analysis of all three important parameters was also

implemented, in order to see which combination of values tends to give the best results

in 100 iterations. It would be interesting to see, if the simultaneous perturbations

will yield the same conclusions about their values. The most significant results are

summarized in Table 4.5.

a A alpha gamma No. Iterations until RMSN=0.01
13 35 0.3 0.07 17
17 45 0.4 0.01 10
9 15 0.3 0.01 15
13 15 0.4 0.09 17
9 25 0.3 0.03 20
7 25 0.3 0.05 3
19 45 0.4 0.09 12
9 15 0.5 0.01 3
15 45 0.3 0.09 15
11 35 0.3 0.05 16
19 45 0.4 0.07 30
9 35 0.3 0.07 3
11 35 0.4 0.01 5
13 15 0.4 0.09 17

Table 4.5: Experiments changing “a”, “A” “gamma” and “alpha” param-
eters

4.2.7 Final set of parameters

It is clear that the algorithm behaves differently when the parameters’ values

change. It seems that, as long as the value of the parameter “a” remains close to “9”,

the chances of the SPSA’s “success” increase. The parameter “gamma” should also

remain close to 0.01, and alpha close to 0.3. Using the values a=9, A=10 gamma=0.01

and alpha=0.3 as a set of parameters that gives a really good RMSN, the final diagram

is shown in Figure 4.12). After only 9 iterations, the SPSA gives RMSN less than

0.01. The new final set of parameters improves vastly the algorithm’s performance,

something obvious when it is also compared with the research of Ozguven and Ozbay

(2008).
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Figure 4.12: Final results of RMSN
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4.3 Another experiment using a car-following model

A car following model can determine a vehicle’s acceleration or deceleration rate

as a function of the speed and relative position of the preceding vehicle. It is based

on the idea that each driver controls a car under the stimuli from the preceding car,

which can be expressed by the function of headway distance or the relative velocity

of two successive cars. More details about car following models could be found in

Section 2.3.

4.3.1 Transmodeler’s Car-Following model overview

The car following acceleration, in the context of this application, is computed by

the following formula:

A±i [t+ ∆t] = a±
V β±
i [t]

Dγ±
i,j−1[t]

(Vj−1[t]− Vj[t]) + εCFj (4.8)

where:

A±i [t+ ∆t] = Acceleration rate of vehicle

Vj[t] = Speed of the subject vehicle

Vj−1[t] = Speed of the front vehicle

Dγ±
i,j−1[t] = Distance between the subject and front vehicles

a±, β±, γ± Model parameters

εCFj Vehicle-specific error term for the car-following regime

The superscripts ± indicate that the calculated acceleration could be positive (+,

acceleration) or negative (-, deceleration). If the speed of the subject vehicle Vj[t] is

less the speed of the front vehicle Vj−1[t] the acceleration rate will be positive (i.e.

subject will accelerate). Otherwise, it will be negative (i.e. subject will decelerate).
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The above car-following model is provided by Transmodeler, a versatile traffic

simulator that simulates a wide variety of facility types, including mixed urban and

freeway networks.

4.3.2 Model calibration using SPSA

For the calibration of the described car-following model, data from a series of

experiments were used. They were conducted in the streets surrounding the city of

Naples, Italy; they represent real traffic conditions in October 2002. All the necessary

data were collected from 4 vehicles, which were moved in series under different traffic

conditions. Noteworthy is that the vehicles were moving in streets with one lane

in each direction. Therefore, the behavior of the drivers is not affected by lane

changes. All vehicles were equipped with GPS receivers that tracked the location of

each vehicle per 0.1 s. Specifically, they were equipped with dual-frequency devices

GPS + GLONASS with horizontal accuracy 10 mm + 1.0 ppm and elevation accuracy

15 mm + 1.0 ppm.

Due to environmental conditions, there were gaps in the above data, i.e. for some

intervals of the experiment there were no recorded measurements. However, for the

purpose of this research, it was preferred to cut the whole data package in smaller

pieces, in order to have files with continuous actual measurements. The usage of some

linear or polynomial interpolation method for the evaluation of missing measurements

was not preferred. A more detailed description of the available data could be found

in Punzo et al. (2005).

The data packages include location records of each vehicle (coordinates x, y, z).

Using the above information the distances between vehicles, the distance travelled

per 0.1s for each vehicle, and their respective speeds were calculated. More details

concerning the necessary calculations and limitations could be found in Papathana-

sopoulou (2012).
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The size and speed ranges of each data package are shown in Table 4.6 and in

Figure 4.13.

a/a No. Observations Duration of measurements (s)
1695 1695 169.4
C621 621 62.0
A358 358 35.7
A172 172 17.1
C168 168 16.7
C171 171 17.0

Table 4.6: Characteristics of data packages

Figure 4.13: Range of speeds (m/s)

For the experiment, the file 1695 was used, because it is the most extensive data

file and it includes a wider range of velocities. With this choice, the creation of a

more representative model could be accomplished. Following the guidelines of the

previous experiment (see Section 4.2), SPSA’s performance is initially analyzed using

the basic parameter values, i.e. A = 15, α = 0.3, c =1, a = 9 and γ = 0.01. The

algorithm does not require complex and time-consuming calculations, so it is chosen

to implement a total of 1000 iterations, in order to illustrate SPSA’s behavior.
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As is known, there is no picture of the correct parameter values which will ul-

timately yield the correct acceleration results for the particular place and time. As

a result, the car following model parameters alpha, beta, gamma took as initial

values the default ones from the Transmodeler simulator (see Figure 4.14).

Figure 4.14: Initial values of car following model parameters

After several executions of SPSA, it was found that the SPSA algorithm is not

able to find the optimal car-following model parameters for this particular set of

measurements. The RMSN values increase exponentially. Probably, this is due to the

fact that, the values of the vector theta are quite small, and the ak and ck coefficients

of the algorithm influence more than necessary the requested vector.

The experiment was repeated, initializing the SPSA with smaller values. he basic

parameters A, α, c, a and γ were divided by 100 in order to adjust their order

of magnitude with the data of this application. The new results were again not

satisfactory. The RMSN was still within an unacceptable range of values (greater

than 1).

From several executions of SPSA algorithm, it was also noticed that the results

could be completely different from time to time. This phenomenon occurs due to the

stochasticity of the SPSA algorithm.

After several efforts to improve the existing results, it was decided to limit the

vector parameters of θ from three to one. The new θ will include only the parameter

alpha, which will once again be set at the default value from the Transmodeler

simulator. The parameter alpha was chosen, because it is not an exponent, and it
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could be managed more easily at the first steps of car-following model calibration.

Additionally, for the full understanding of SPSA’s final results, the alpha values

that fit the available observations were calculated (RMSN = 0). In Figure 4.15 the

histogram of values’ range is presented.

Figure 4.15: Fitted values of Car-Following model’s parameter “alpha”

It is obvious that SPSA would never be able to converge to a certain value, as the

histogram displays a wide range of fitted values per observation.

Therefore, it was chosen to implement SPSA per observation. The algorithm

successfully managed to reach the optimal solution - the fitted value of alpha. In

Diagram 4.16 the total number of iterations per acceleration value are presented. It is

shown, that for positive acceleration values, the algorithm needs more time to reach

acceptable values of RMSN. Diagram 4.17 shows how many sets of 500 Iterations the

SPSA needs to terminate. he larger percentage of observations requires only 1 set.
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Figure 4.16: Necessary sets of iterations per acceleration value

Figure 4.17: No. of necessary iterations sets for SPSA termination

The overall picture shows that the algorithm behaves correctly. The parameters

seem to affect significantly the final result, therefore the correct choice of their values

is important.
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CHAPTER V

Towards complete DTA calibration

In this chapter, the on-line calibration approach using the DynaMIT DTA system

is demonstrated. The experimental setup and design are described in detail.

5.1 Objectives

As it is already mentioned in Chapter II, Dynamic traffic assignment models try to

represent traffic realism and human behavior. They depart from the standard static

assignment assumptions to deal with time-varying flows. However, none of them can

present a universal solution for general networks, because many ill-behaved system

properties still exist.

Traffic conditions are estimated and subsequently predicted utilizing data from

diverse resources. The required parameters for these procedures are calibrated off-

line, generating in this way a library, from which the most appropriate can be selected

and used. Off-line calibrations can be repeated several times, incorporating every time

new archived surveillance information and recent operational experience.

On-line calibration is applied in order to steer the model parameters to values

closer to the true ones. It is a systematic procedure whose purpose is to obtain those

model parameter values that will minimize the discrepancy between the observed

measurements and their simulated counterparts (when these parameters are used as
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inputs to the models) (Antoniou, 2004).

The objective of this chapter is to demonstrate the on-line calibration approach

using the DynaMIT DTA system. The experimental setup and design are described

in detail.

5.2 Model and parameters

DynaMIT (Dynamic network assignment for the Management of Information to

Travelers) is one of the DTA applications which has been implemented and tested in

Traffic Management Centers (TMCs). It is a real-time computer system for traffic

estimation, prediction and generation of traveler information and route guidance. It is

aimed at supporting the operation of Advanced Traveler Information Systems (ATIS)

and Advanced Traffic Management Systems (ATMS).

DynaMIT combines a flexible microscopic demand simulator and a mesoscopic

supply simulator to effectively capture complex demand and supply processes and

their interactions. It estimates the current state of the network using both historical

and real-time information, and generates prediction-based information for a given

time horizon.

During the first phase, it provides estimations in terms of O-D flows, link flows,

queues, speeds,densities and travel times. Two main models are used:

• A demand simulator that combines user behavior models and departure time

choice with real-time OD estimation.

• A network state estimator that simulates driver decisions and collects informa-

tion about the resulting traffic conditions

The above models interact with each other in order to provide demand and network

state estimates that are congruent and utilize the most recent information available
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from the surveillance system. Individual travel demand decisions, which in majority

occur before the trip begins, include origin, destination, departure time and route. A

disaggregate representation of demand that accounts for the individual ’s socioeco-

nomic characteristics and access to information is used.

The prediction-based guidance phase consists of several interacting components:

• pre-trip demand simulation,

• OD flow prediction,

• network state prediction, and

• guidance generation o steer drivers towards optimal decisions.

DynaMIT leverages the best available knowledge of the current and anticipated

network conditions, in order to provide the required information to the drivers. It

has also the ability to trade-off level of detail (or resolution) and computational

practicability, without compromising the integrity of its output.

Some of DynaMIT’s important features are:

• Demand simulation using a micro-simulator. Analyzing the information pro-

vided by the ATIS, DynaMIT gerenates individual travelers and simulates their

choices (whether to travel or not, and if yes, which would be their route choice

and mode).

• Supply simulation using a mesoscopic traffic simulator. The development and

dissipation of queues, spillbacks, and congestion in general are represented in a

time-based environment. The level of detail is determined by the choice of time

steps and the level of aggregation of vehicles into homogeneous packets.

• Simulation of demand-supply interactions.

• Adaptability to diverse ATIS requirements.
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• Distinguish between informed and uninformed drivers.

• Treatment of real time scenarios such as incidents, special events, weather con-

ditions, highway construction activities, uctuations in demand, etc.

• Integration with the MITSIMLab microscopic traffic simulator. This coopera-

tion allows offline evaluation and calibration

More detailed discussions about the features, framework and implementation of

DynaMIT can be found at Ben-Akiva et al. (1997, 1998, 2011).

5.3 Experimental setup

The inputs of the on-line calibration module are:

A priori values of the model parameters

A priori information is available usually from the output of the off-line calibration

implementation. More specifically:

• Time-dependent OD matrices;

• Segment capacities;

• Parameters of the speed-density relationship;

• and error covariance matrices and autoregressive fractions

could be available for the transition to the next phase.

Historical information of the transportation system

It is a set of information, which is not often modified, in relation to dynamic

surveillance information. It reflects the foundation for the development of a trans-
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portation model and it may include the network geometry, traffic control settings and

layout of the surveillance system.

Surveillance data

It captures the prevailing traffic conditions. The accuracy and precision of this

information is very important, because all the calibration procedure is based on the

identification of the estimated (and predicted) conditions and these surveillance mea-

surements.

5.3.1 Network description

For the on-line calibration procedure, the expressway network of Singapore will

be used (Figure 5.1). The expressway system includes expressway links, on-ramps

and off-ramps. There are in total 831 nodes connected by 1040 links. Each link is

made up of several segments based on the geometry of the database.

Figure 5.1: Singapore Expressway Network (OpenStreetMap)
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5.3.2 Supply parameters’ determination

The supply parameters were generated according to a script been written by

SMART Future Urban Mobility IRG’s researchers. More specifically:

• For short segments (i) the minimum speed of the segment is set to to it’s free

flow speed and (ii) the output capacity of the segment is set to JamDensity *

Free-Flow Speed * No. of lanes

• For normal segments the minimum speed is calculated using speed density func-

tion with the density to be equal to jam density. If the resulting minimum speed

is less than 10km/h, the minimum speed will be set to 10km/h.

The script presents the basic principles of the required parameters calculation. In

certain expressways some values were changed again manually, as they have certain

peculiarities, that a script can not capture.

5.3.3 Speed and flow data

Speed and flow data are provided by the Land Transport Authority of Singapore

(LTA), in real time, for use in DynaMIT. The real time data feed are sent into the

DynaMIT system every 5 minutes for on-line calibration purposes.

More specifically, flow data is provided by The EMAS system (Expressway Mon-

itoring and Advisory System). All the necessary information is obtained from fixed

cameras ( in total 338 “sensors”) which are mounted on street lamps at distances

of approximately 500 to 1000 meters (Figure 5.2). The coordinates of the sensor

locations were also provided. These sensor locations have been mapped to Aimsun

segments. The final result was extracted and then imported in DynaMIT.

Speed data is provided by the LTA for each segment on the expressway. A total

number of 3388 segments in the DynaMIT network are constantly updated. The pro-

vided data is derived from probe vehicles equipped with GPS. The exact method for
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Figure 5.2: Example of cameras that measures traffic flow on Singapore
expressways (photo taken by Stephen Robinson)

estimating the speed is proprietary and the details have not been published. However,

it is known that taxis provide the bulk of the raw data used to make the calculations

(Lu, 2014).

5.4 Data cleaning

The final achievable accuracy of the calibration process is highly dependable on

the quality of the provided data. The calibrated parameters would wrongly fit to

inconsistent data, and the real world traffic conditions will not be successfully pre-

dicted. Therefore, the evaluation of the quality of data is an important procedure

before starting the off-line and on-line calibration process.

Lu (2014) implemented an initial calibration using 338 sensors. An inconsistency

check gave also a comprehensive state of the network. It was noticed that there were
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a lot of data inconsistencies introduced by incidents, as well as several malfunctioning

sensors. Therefore, an additional check of network and sensors’ status was necessary

before the implementation and validation of new methodologies.

LTA provided SMART-FM IRG recearchers with updated sensor data. A new off-

line calibration of the expressway network gave really poor results (see Figure 5.3).

LTA’s data appears not compatible with the corresponding ones that DynaMIT pro-

vides.

Figure 5.3: Map showing performance of each detector (Percentage Error)

It is therefore quite possible that there are errors:

• in LTA data

• in DymaMIT input files

Further checks were carried out, which were focused mainly on the structure of the
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network and on the sensors location. Utilizing already used network files of Singapore

network by Aimsun, a detailed inspection of the following was conducted:

• Check of segments and links associations

• Check of traffic stream on on-ramps and off-ramps

• Check of sensors coordinates uning Google Street View

• Check of shortest paths

The last check could show if there is a miss-join of segments or lanes, that does

not allow DynaMIT to compute correctly the shortest path.

5.5 On-Line Calibration in the state estimation process

Currently in DynaMIT there is code to partially perform on-line calibration of

OD parameters. This is achieved using an assignment approach to estimate what the

ODs should be using a Generalised Least Squared method.

Figure 5.4: A GLS approach is used in the current DynaMIT-R to calibrate
OD values
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The estimation and prediction of OD flows is performed at the aggregate level:

the total flow between each OD pair, across all individual drivers (Balakrishna, 2006).

Sequential OD estimation for the departure intervals h = 1, 2, ..., T are iterated with

error covariance estimation until convergence. The OD estimates from interval h form

the a priori estimates for interval h + 1 for the sequential OD estimation.

The proposed process flow of the SP-EKF method is given in Figure 5.5 and de-

scribed in greater detail in Table 5.5. The SPSA is present in the step of linearization,

as it has already been mentioned in Section 2.2.6.

Figure 5.5: Process flow of the SP-EKF method
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Task Name Description Inputs Interval File source

C1a.1 In-

sert state

vector

For the first iteration of the

on-line calibration process,

initial values of the state vec-

tor are needed

ODs, capac-

ities, speed-

density

relationship

parameters

etc. (state

vector)

h-1 historical data or

warm-up phase

C1a.2

Insert

varcov.dat

Insert the initial values of Po

- varcov.dat

varcov.dat h-1 historical data

C1a.3 In-

sert F, Q,

R matrices

During the time and measure-

ment update calculations, au-

toregressive factors (matrix

F) and error covariances (Q,

R) are needed

F, Q, R

(.txt)

- offline calculated

matrices (using

historical data for

each interval within

one day)

C1b Insert

necessary

files from

MITSIM

During the measurement up-

date, the difference between

the real-time data and the es-

timated data from DynaMIT

must be calculated. Real-

time data are represented by

sensor counts

sensor.dat h MITSIM

C2.1 Cal-

culate time

updated

state vec-

tor

According to the Equa-

tion 2.5 time updated state

vector is calculated

state vector

of interval

h-1 (from

C1a.1)

- state vector of in-

terval h
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C2.2 Cal-

culate time

updated

“varcov”

matrix

Equation 2.6 - Time updated

“varcov” matrix is calculated.

“varcov”

matric of

interval

h-1 (from

C1a.1), Q

(from C1a.3)

- “varcov” matrix of

interval h

C3 Perturb

state vec-

tor within

limits

1st step of SPSA implemen-

tation (Linearization phase)

state vector

of interval h

(from C2)

- PLUS and MINUS

perturbations

C4,5 Run

DynaMIT

Run DynaMIT with PLUS

and MINUS perturbations

from C3 - RMSN (result from

loss function y)

C6 Calcu-

late gradi-

ent - H(h)

Following the final step of

SPSA algorithm...

from C4,5 h value of the gradi-

ent - H(h)

C7 Cal-

culate Gain

matrix

Equation 2.7 C2.2, C6,

C1a.3

h value of Gain ma-

trix

C8 Run

Dyna-

MIT with

the state

vector of

interval h

Use the output of step C2.1

and run DynaMIT

State vector h Simulated sensor

counts

C9 Cal-

culate

(real data-

simulated)

Calculation of an updated

state vector according to the

Equation 2.8

C8 data h -

C10 Calculation of the new state

vector, and “varcov” matrix

C2.1, C6,

C7, C9 data

h final state vec-

tor,“varcov” matrix
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Throughout the implementation of On-line calibration, the DynaMIT would be

called at least 7 times. It is necessary to run DynaMIT more than tree times during

the linearization step, in order to minimize the stochasticity of the results. The

parallelization of certain applications would be useful, because the process requires

quick calculations in real time.
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CHAPTER VI

Conclusion

6.1 Summary

The availability of sufficiently accurate macroscopic and microscopic models is

important for the design and the testing of modern freeway traffic control strate-

gies. Their performance is largely independent of network’s initial condition, data

that could be incorporated in a model through different parameter values or small

methodology changes.

The calibration framework is a need which is continuously highlighted through

several researches. A well implemented calibration will lead to results close as possible

to the observed ones in the field. he stage of calibration is very important in the final

performance of the simulation model. Therefore, the main goal of this thesis was

the development of an integrated calibration methodology using the Simultaneous

Perturbation Stochastic Approximation (SPSA) algorithm, that will contribute to

the simulation model efficiency.

Sensitivity analysis was firstly implemented through a basic traffic simulation

model. All the parameters of SPSA were analyzed, re-running each time the studied

model. It was found that certain parameters affect significantly SPSA’s converge,

while some others not. More specifically, the parameter c appears not to improve the

final result, while the parameters alpha gamma and a seem to contribute signifi-
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cantly to the convergence of the algorithm.

Through a second experiment, using a Car-Following Model provided by the

Transmodeler simulator, he above findings were confirmed. Even small changes in

the values of important parameters could lead to the ultimate failure of the algo-

rithm. Many iterations will once again allow the convergence of the algorithm to the

optimal value, however the necessary time would be much higher, a conclusion not

permitted to complex models and large data volume.

Traffic conditions are estimated and subsequently predicted utilizing data from

diverse resources. The required parameters for these procedures are calibrated off-

line, generating in this way a library, from which the most appropriate can be selected

and used. Off-line calibrations can be repeated several times, incorporating every time

new archived surveillance information and recent operational experience.

The second objective of this thesis was to demonstrate the on-line calibration

approach using the DynaMIT DTA system. A case study with the entire expressway

network in Singapore was presented. The calibration methodology was described in

detail through a detailed table. It was scheduled to exploit real time field sensor counts

and speeds data for the real time calibration. Unfortunately, the process has not

reached the stage of implementation, because a data cleaning process was introduced

and it is still in progress. Several chenks showed, that Singapore network still needs a

lot of improvements, as several segments and intersections are missing. Additionally,

the data that Land Transport Authority send to the main server of DynaMIT seems

to present some failures (inactivated sensors, coverage range determination weakness

etc).

6.2 Future research directions

In the present thesis, the behavior of SPSA through two traffic simulation mod-

els was studied. For the formulation of integrated conclusions on SPSA’s specifics,
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further experimental analysis need to be demonstrated. The presented findings can

not yet be generalized. It is important to further study the progress of the algo-

rithm’s calculations and to find solutions to still existing problems, such as the speed

of convergence to the optimal solution.

The implementation of the on-line calibration approach, as it is previously an-

alyzed step by step, should be also one of the future directions. The method has

the issue of scalability due to the extremely heavy computational burdens, however

the Simultaneous perturbation method should be able to accelerate significantly the

estimation process.

It would be also interesting to see how the W-SPSA algorithm would perform.

The parallelization of certain calculations can give very satisfactory results in an

environment of rapid alternations and decisions. The on-line calibration demands

quick solutions to any new formed questions.

The use of distributions of collected data (such as accelerations, using oppor-

tunistic sensors, such as smart-phone accelerometers) for calibration purposes could

also be investigated. The extensive need for information nowadays taking advantage

of pre-processed data, which through the distributions could include more levels of

information.

107



BIBLIOGRAPHY

108



BIBLIOGRAPHY

Abdulhai, B., J.-B. Sheu, and W. Recker (1999), Simulation of its on the irvine fot
area using” paramics 1.5” scalable microscopic traffic simulator: Phase i: Model
calibration and validation, California Partners for Advanced Transit and Highways
(PATH).

Abou-Rahme, N., S. Beale, B. Harbord, and E. Hardman (2000), Monitoring and
modelling of controlled motorways.

Adeli, H. (2001), Neural networks in civil engineering: 1989–2000, Computer-Aided
Civil and Infrastructure Engineering, 16 (2), 126–142.

Al-Shihabi, T., and R. R. Mourant (2003), Toward more realistic driving behav-
ior models for autonomous vehicles in driving simulators, Transportation Research
Record: Journal of the Transportation Research Board, 1843 (1), 41–49.

Allström, A., A. M. Bayen, M. Fransson, D. Gundleg̊ard, A. D. Patire, C. Rydergren,
and M. Sandin (2014), Calibration framework based on bluetooth sensors for traffic
state estimation using a velocity based cell transmission model, Transportation
Research Procedia, 3, 972–981.

Antoniou, C. (2004), On-line calibration for dynamic traffic assignment, Ph.D. thesis,
Massachusetts Institute of Technology.

Antoniou, C., M. Ben-Akiva, and H. N. Koutsopoulos (2007a), Nonlinear kalman
filtering algorithms for on-line calibration of dynamic traffic assignment models,
Intelligent Transportation Systems, IEEE Transactions on, 8 (4), 661–670.

Antoniou, C., H. N. Koutsopoulos, and G. Yannis (2007b), An efficient non-linear
kalman filtering algorithm using simultaneous perturbation and applications in
traffic estimation and prediction, in Intelligent Transportation Systems Conference,
2007. ITSC 2007. IEEE, pp. 217–222, IEEE.

Antoniou, C., R. Balakrishna, and H. N. Koutsopoulos (2011), A synthesis of emerging
data collection technologies and their impact on traffic management applications,
European Transport Research Review, 3 (3), 139–148.

Antoniou, C., A. Kondyli, G.-M. Lykogianni, and E. Gyftodimos (2013), Exploratory
assessment of the Limiting Extended Kalman Filter properties, Transport and
Telecommunication, 14 (1), 1–12.

109



Antoniou, C., V. Gikas, V. Papathanasopoulou, T. Mpimis, I. Markou, and H. Perakis
(2014), Towards distribution-based calibration for traffic simulation, in Intelligent
Transportation Systems (ITSC), 2014 IEEE 17th International Conference on, pp.
786–791, IEEE.

Ashok, K. (1996), Estimation and prediction of time-dependent origin-destination
flows, Ph.D. thesis, Massachusetts Institute of Technology.

Ashok, K., and M. E. Ben-Akiva (1993), Dynamic origin-destination matrix esti-
mation and prediction for real-time traffic management systems, in International
Symposium on the Theory of Traffic Flow and Transportation (12th: 1993: Berke-
ley, Calif.). Transportation and traffic theory.

Ashok, K., and M. E. Ben-Akiva (2000), Alternative approaches for real-time esti-
mation and prediction of time-dependent origin–destination flows, Transportation
Science, 34 (1), 21–36.

Balakrishna, R. (2006), Off-line calibration of dynamic traffic assignment models,
Ph.D. thesis, Massachusetts Institute of Technology.

Balakrishna, R., and H. N. Koutsopoulos (2008), Incorporating within-day transitions
in simultaneous offline estimation of dynamic origin-destination flows without as-
signment matrices, Transportation Research Record: Journal of the Transportation
Research Board, 2085 (1), 31–38.

Balakrishna, R., M. Ben-Akiva, and H. N. Koutsopoulos (2007), Offline calibration of
dynamic traffic assignment: simultaneous demand-and-supply estimation, Trans-
portation Research Record: Journal of the Transportation Research Board, 2003 (1),
50–58.
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