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Abstract. Algebraic Cryptanalysis [36] is concerned with solving sys-
tems of particular multivariate non-linear equations derived from var-
ious cryptanalysis problems. Many different methods for solving such
problems have been proposed in cryptanalytic literature: XL and XSL
method, Gröbner bases, SAT solvers, and few other. In this paper we
survey these methods and point out that the main working principle in
all these is essentially the same. One quantity grows faster than another
quantity which leads to a phase transition and the problem becomes ef-
ficiently solvable. We illustrate this with examples from both symmetric
and asymmetric cryptanalysis. Exact analysis can be quite difficult with
complex redundancies and additional equations which help the attacker.
In this paper we point out that there exist a second (more) general
way of formulating algebraic attacks which did NOT so far have a com-
parable success in cryptographic literature. Past experience shows that
the algebraic degree and/or time complexity of cryptanalysis problems
could be reduced by a variety of dedicated coding techniques which in-
volve redundancy with addition of new variables. This opens numerous
new possibilities for the attackers and leads to interesting optimization
problems where the existence of additional equations may be somewhat
deliberately engineered by the attacker. For example we show examples
of I/O relations where introduction of extra variables allows to substan-
tially reduce the degree and the complexity of polynomial equations.
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1 Two Approaches To Solving Non-Linear Equations

There are two major philosophies in algebraic cryptanalysis and for the general
problem of solving large system of non-linear polynomial/algebraic equations.

1. Either we expand the number of monomials.
2. Or we expand the number of variables

Let us also recall what is the main working principle in both types of techniques:
we make two values grow, yet one grows faster. We will see several examples of
this in this paper. It allows one to understand why both families of techniques
may and will in many cases work.

1. When we add new monomials, we grow both the number of monomials
T and the number of new equations R. For any system of equations with a
certain R/T we can easily improve the R/T ratio by increasing the degree.
Then R grows faster because there are several ways to obtain the same
monomial. The number of monomials does typically NOT1 grow as fast as
the number of new equations.

2. When we add new variables we also grow both the number of monomials
T and can generate more equations R. Here it is maybe less obvious that
R can also grow faster and sometimes even asymptotically faster than T ,
well, at least and limited to2 a certain interval. One example of this can be
found in Section 12.3 in [24] another in [11].

1.1 Historical Developments

Both types of methods already existed and both philosophies worked quite well
in their own (somewhat disjoint) space in algebraic cryptanalysis of DES in
[5]. More generally, both sorts have also been studied for solving systems of
polynomial equations over finite finite fields at Eurocrypt 2000 [6].

It is important to see that techniques of type 1. which expand monomials
are nowadays standard, well studied, fully automated by software and do not3

require a lot of attention. The second family has not been sufficiently studied.

1.2 Difficulties with Family 2 Techniques

There have been some negative results on techniques of type 2. At Eurocrypt
2000 [6] the authors consider the general problem of solving arbitrary quadratic
or low degree equations over a finite fields. We have then re-linearization tech-
nique which adds new variables (type 2) and the XL algorithm which generates

1 Identical monomials are generated many times, for example x1x2x3 will be obtained
3 times, when multiplying x1x3 by x2, etc. Cf. also slide 80 of [20].

2 A situation where R grows faster than T permanently must be an illusion. Let
F ≤ R be the number of linearly independent equations. These equations belong to
the linear space of dimension T . Thus F ≤ T and very frequently F ≤ T − 1, cf. [7].

3 Such software methods are sometimes called “plug and pray” attacks, cf. [24] and
the main point in this paper and in [24] is that we would like to develop a richer
galaxy of attacks where the attacker plays a more active role.
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new products of variables (type 1). At Eurocrypt 2000 it was concluded that re-
linearization technique is highly redundant4 and that XL works better [6]. Then
researchers have discovered that at higher degrees XL is also redundant [3, 22,
23, 8, 9, 7, 1] and modern Gröbner basis techniques are precisely about removing
even more redundancies in XL, cf. [1, 2].

One reason why the second family has not been sufficiently studied is that
gives the code breaker a very considerable degree of freedom. This is ac-
tually a big a problem: it is not clear how to even start to design5 an attack
based on this idea. On the positive side some success was definitely achieved
with methods related to hardware implementation and multiplicative complex-
ity S-box optimizations [16, 5, 14]. Until now there were extremely few attempts
to invent new non-trivial attacks techniques based on 2nd type methods, maybe
with the exception of [24].

It is clear that the 2nd method always somewhat contains the 1st method,
new variables can be just monomials, which again however leads to known prob-
lems with redundancy cf. [6]. Until now cryptographic literature knows very few
convincing attacks of the 2nd type. This with exception of SAT solver attacks,
which very clearly greatly benefit from added variables cf. for example [14, 5, 16].

Combination Attacks. It is also important to note that both approaches
1. and 2. can and should be combined. To put it simply, the second approach
may make the first approach work better, equations become more overdefined
and the so called degree of regularity [2] is expected to decrease, i.e. system
is solved by Gröbner basis software or other software at a lower degree, which
implies lower running time and less memory, cf. also [11, 24].

We are now going to review several classical methods in Algebraic Crypt-
analysis, explain what quantities are expanded, and look at the question of how
quickly these numbers grow.

1.3 XL Algorithm, F4, F5 and Variants

The XL algorithm [6] was extensively studied and there exist countless variants
of this algorithm. For example if m quadratic equations with n variables over IF2

which is assumed to have one unique solution. The basic XL algorithm consists
of multiplying all equations by monomials of degree D − 2 to create a larger
number of R equations of degree D. In general in this and similar algorithms
the number of linearly independent equations F ≤ R has a simple and totally
predictable behavior, see [7, 3]. For larger D the prediction is less accurate and
also this is where more sophisticated algorithms such as F5 emerge and can make

4 Interestingly one could repair the linearization technique by some form of decimation
(erasing a subset of equations) where the redundancies are removed.

5 A related concept is the concept of “Algebraic Complexity Reduction” of [14] which
has been a great success in a restricted case of a block ciphers with a lot of high-level
self-similarity and which is different and stronger. In [14] the attacker also makes
well chosen guesses on special combinations of variables.
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a difference. Here we show a simple example at degree 5 taken from [7].

n
m
D
R
T

F

24 24 24
16 27 32
5 5 5

37200 62775 74400
55455 55455 55455

33800 53325 55454

A ready software tool which allows to run such simulations can be found in [10].
For small D this sort of experiments can be predicted with 100% accuracy in
practice, cf. [7, 3]. We expect that we have always:

For D = 5, F = min

(
T − 1, R− (n+ 1)

(
m

2

)
− (n+ 1)m

)
We obtain a curve which a collation of two closed formulas with a very neat

and abrupt transition. Actually even though no randomly generated or random-
looking counter-examples are known, we should remain sceptical if this will be
always the case in general, especially at the transition boundary. The crucial
object of study in this paper is precisely this “phase transition” phenomenon
where we shift from one predictable curve to another equally predictable curve.
The very existence of phase transitions indicates the predictions in algebraic
cryptanalysis will never be an exact science and that rules can eventually be
breached or inexact. However predictions are (badly) needed in order to be able
to evaluate the complexity of different attacks.

1.4 XSL Algorithm

The XSL algorithm is inspired by the idea that XL algorithm is essentially a
tool for dense equations in which all monomials play a similar role. This is very
rarely the case in cryptanalysis. If the equations are sparse, a peculiar method
was invented where a phase transition is sought by multiplying only by a selection
of monomials for D = 4 which is simply using only monomials which are already
used, cf. [22, 23].

One example of a data series obtained in an application of the XSL attack
to a toy cipher can be found in Appendix C. of [23]. However to the best of
our knowledge until now nobody has yet studied if the behavior of XSL attacks
can be predicted accurately. We consider the data series from Appendix C. of
[23] and used Microsoft Excel to fit a polynomial model for these data which
minimizes the least square error. Let K be the number of rounds in this 6-bit
toy cipher. We then observe that in this precise attack we have almost exactly
(we have R2 = 1 in all cases):

R = 936K2 − 208K + 144

T = 882K2 − 147K + 7

T ′ = 504K + 168

F = 850K2 − 109K + 6
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In this attack, the terminating condition is F ≥ T −T ′, cf. [23] and we conclude
that this attack works for up to 16 rounds for this toy cipher.

2 The Algebraiz-ation Challenge

Now in order to make further progress in algebraic cryptanalysis, two interesting
questions are as follows:

1. Can we efficiently generate or discover additional6 equations the existence
of which is maybe not expected or less easily predicted? This is frequently
the case and it helps to solve equations with substantially lower complexity.

2. Can we solve by algebraic cryptanalysis problems which seem unsolvable
or a poor fit for algebraic cryptanalysis? For example, the DES S-box do
not have any strong algebraic structure. Yet algebraic coding and algebraic
cryptanalysis is possible, cf. [5]. A question which is even (a lot) more difficult
is a question of ECDL problem in elliptic curves, cf. [35, 30, 24].

These two research directions seem unrelated at the first sight. In fact there
are related at more than one level. Two fundamental definitions are at the heart
of the connection:

Definition 2.0.1 (An I/O relation, [5, 19, 17]). Consider a function f :
IFn

2 → IFm
2 , f(x) = y, with x = (x0, . . . , xn−1) , y = (y0, . . . , ym−1).

We call an I/O relation any polynomial

g(x0, . . . , xn−1; y0, . . . , ym−1) = 0

which hold with certainty, i.e. for every pair (x, y) such that y = f(x).

This allows to define a very useful notion of:

Definition 2.0.2 (The I/O degree, [5, 19, 17]). Again consider a function
f : IFn

2 → IFm
2 . The I/O degree of f is the smallest possible degree in the linear

space of existing polynomial I/O relations as defined above.

And here is our second definition:

Definition 2.0.3 (Multiplicative Complexity (MC) [31, 16]). MC is the
minimum number of AND gates which are needed if we allow an unlimited
number of NOT and XOR gates.

Both notions of I/O relations and MC lead to showing that some degree
or algebra-ization is always possible and inevitable in algebraic cryptanalysis.
They lead to specific compact algebraic (or multivariate polynomial) encoding
methods for various cryptanalysis problems.
6 This happens for example in the cryptanalysis of the multivariate public-key cryp-

tosystems with the discovery of so called “implicit equations” [29, 4] which we call
“I/O relations” in our Def. 2.0.1. cf. for example [4, 28, 27]. We also have a closely
related notion of so called “degree falls” sometimes also called “mutants” which are
for example observed in ElimLin attacks [5, 33, 11, 15].
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2.1 On Small S-boxes

If in cryptanalysis of HFE we have specific structural reasons why some algebraic
polynomial “I/O relations” do exist cf. for [28, 27]. In symmetric cryptanalysis,
we do not have a strong internal algebraic structure, we however do have specific
structural properties which are consequences of how the cipher is designed.

Any very small S-box (for example up to 4 bits) works with both definitions
above: it leads to I/O relations and to relatively small MC, and therefore to a
rich universe of possible algebraic attacks. For example we have a generic folklore
Courtois Theorem 1 which we will find in many papers [5, 23, 13]:

Theorem 1 (Courtois). For any n×m S-box, F : (x1, . . . , xn) 7→ (y1, . . . , ym),
and for any subset T of t out of 2m+n possible monomials in the xi and yj, if
t > 2n, there are at least t − 2n linearly independent I/O equations (algebraic
relations) g(x, y) involving (only) monomials in T , and that hold with probability
1, i.e. for every (x, y) such that y = F (x).

Remark. Simon is a recent example of a block cipher with truly exception-
ally low MC and an excessively small S-box. Here the S-box is an AND gate, the
simplest possible non-linear component. The complexity of Simon is yet substan-
tially lower than with CTC2, DES or GOST for which algebraic cryptanalysis
were previously studied and implemented [9, 5, 14]. It should not therefore be
surprise that Simon will be our favorite block cipher to study.

3 ElimLin Attacks on Simon

Two recent papers consider the ElimLin attacks on Simon [33, 11]. ElimLin is a
remarkably simple algebraic attack which to some extent break any cipher, if not
too complex. The study of ElimLin is an excellent case where many interesting
things happen simultaneously: degree falls, generation of extra equations the
existence of which was not initially expected (like in [4]), phase transitions.

ElimLin is a curious sort of attack, cf. slide 126 in [20]. It can be described
informally in 2 simple steps:

1. Find linear equations in the linear span.

2. Eliminate some variables, and iterate (try 1. again).

ElimLin is a stand-alone attack which allows one to recover the secret key of
many block ciphers [8, 9, 12, 21] and more recently in [33, 25].

The main characteristic of ElimLin is that it quietly dissolves non-linear
equations and generates linear equations. This algorithm basically makes pro-
gressively disappear the main and the only thing which makes cryptographic
schemes not broken by simple linear algebra: non-linearity. It is not clear how-
ever why this works and how well the ElimLin attack scales for larger systems
of equations. In recent 2015 work of Raddum we discover that (experimentally)
ElimLin breaks up to 16 rounds of Simon cipher [33] however it is hard to know
exactly what happens for 17 rounds.
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3.1 The Overdefined Heuristic

Now ElimLin has something which renders XL, XSL, T’ method [20, 22], and
many other potentially obsolete at least in block cipher cryptanalysis. Actually
none of these methods works very well, because they have been designed to solve
cryptanalysis problems with small quantity of data which leads to a large value of
the so called “degree of regularity” [2] which is essentially the maximum degree
D of polynomials manipulated which we mentioned before for XL (however for
a better algorithm this degree can be lower). Our main observation is something
which was actually known longer, at least since [6]. The fact is that overdefined
systems of equations are substantially easier to solve. Moreover, it could be
possible for the attacker, to try to design an attack which creates such systems
of equations. We can call it an overdefined strategy, cf. [17, 24].

One simple method to achieve this is to increase the data complexity in the
attack which makes the “degree of regularity” decrease [8, 9]. For example we
consider an attack K known plaintexts and study how the complexity of the
attack grows with K. Then we discover a fascinating aspect of ElimLin which
only recently have attracted some attention [11]. The fact is that the number of
equations generated can go through several stages cf. [11] as K grows. Initially
there are no non-trivial equations. Then we obtain a curve which grows faster
than linear in K. Our recent7 paper show that for example super-linear growth
is possible [11]. Then eventually it achieves saturation and grows linearly.

Fig. 1. Number of linearly independent equations generated at stage 4 of the ElimLin
algorithm for 8 rounds of Simon 64/128 according to [11].

In a recent PhD thesis we also study enhancements for ElimLin algorithm
similar to those studied in [25] and show that the number of equations which
could be added to ElimLin can follow a curve which is a collation of not less
than 5 distinct intervals where the result seems to be predictable with perfect
accuracy, to later switch to another curve. This suggests that we need to remain
sceptical about any prediction technique however accurate it may seem.

7 One (older) example which shows that the number of equations grows faster than
linear as a function of the data complexity K in ElimLin can be found at slide 153
in [20].
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4 Coding ECC Cryptanalysis Problems

The same quest of trying to construct systems of equations which are very highly
overdefined is also what motivates our recent research on coding ECC cryptanal-
ysis problems [24]. We expect to achieve some sort of happy tradeoff between
increasing the number of variables and lowering the regularity degree of the
equations which are then going to become more efficiently solvable. This is our
recent approach which was designed as an alternative to early and more recent
attempts [35, 30] to design an index calculus algorithm for the ECDL problem
based on so called Semaev Polynomials [35]. Traditionally, ECC relations of type
P1 + P2 = P3 will be coded by the S3 polynomial which following [34] is

S3(x1, x2, x3) = (x1−x2)2x23−2 [(x1 + x2)(x1x2 +A) + 2B]x3+(x1x2−A)2−4B(x1+x2)

This polynomial is of degree 6 and it is already quite complex. Can we do better?
In this paper we do not claim to study these problems in detail. We just

recall that the main idea is that the attacker wants to code an ECC cryptanalysis
problem by expanding the number of variables and this in order for the “degree of
regularity” to decrease, i.e. system is expected to solved more easily by various
techniques. We refer to [24] for a more systematic presentation of this attack
strategy. In this paper we just show one concrete example on how a redundant
set of ECC variables can lead to some unusually simple equations to exist.

4.1 On ECC Codes

The philosophy of adding new variables can be studied in terms of certain types
of ECC codes.

Definition 4.1.1 (ECC Code).
We call an ECC Code any injective application

F : E(IFp)L → E(IFp)K

which is defined for all except a small number of special EC points.

Remark: We should note that error correcting codes which are defined or con-
structed using elliptic curves are typically defined as subsets of IFK where IF is
a finite field, cf. for example page 11 in [26]. In this paper and in [24] we find it
more convenient to define ECC Codes as a subset of IEK where IE is an elliptic
curve, even though later we will just look at EC coordinates of these points in
IFK . We refer to [26] for additional literature pointers about error correcting
codes and those which use elliptic curves.

Now we are going to exhibit one ECC property which to the best of our
knowledge has not been studied before and which show that redundant sets of
variables can lead to substantial simplification in the complexity of systems of
polynomial equations. Our paper [24] contains more such properties and explains
more in detail the process where the existence of such properties can be seen
as an alternative to (or an enhancement to) some recent attempts to solve the
ECDL problem in [35, 32, 30], which attempts so far were not a great success
and better methods need precisely to be invented.
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4.2 D73 - A New Family of Cubic I/O Relations

We have:

Theorem 4.2.1 (D73 Theorem). We consider the following set of variables on
EC, a special form of ECC Code with 3 inputs and 7 outputs for any Weierstrass
elliptic curve modulo a large P .

(P1, P2, P3) 7→
P1 P2 P1 + P2

P1 + P3 P2 + P3 P1 + P2 + P3
P3

Now we consider only the x coordinates of these 7 points. We call them
sx1, sx2, sx12 for the points in the first line, then sx13, sx23, sx123 are for the
points the first line, and sx3 will be the x coordinate for the last point P3. This
is summarized on the picture below:

sx1 sx2 sx12
sx13 sx23 sx123
sx3

If all the 7 points are distinct from the ECC neutral element ∞ we have:

sx1*sx2*(sx23-sx13) +sx1*sx3*(sx12-sx23) +sx2*sx3*(sx13-sx12)

+sx123[sx1*(sx13-sx12)+sx2*(sx12-sx23)+sx3*(sx23-sx13)] = 0

Remark. Our D73 equation is a homogenous polynomial of degree 3. We
challenge the reader to discover anything comparable in terms of elegance and
simplicity for an ECC Code expansion with a similar expansion factor. The main
point in this paper is that having redundant variables could be a good idea. It
may allow to greatly simplify polynomial equations and effectively replace Se-
maev polynomials by some simpler and lower degree polynomials. This we have
not demonstrated, we just demonstrate the existence of some simpler polynomi-
als, while in any cryptanalytic attack on the ECDL problem we expect to use
a lot more polynomials of other types and for the time being we refrain from
making any conclusions about how our discovery might impact the complexity
of such methods, as currently such methods are yet very inefficient cf. [30, 24].
An interesting question is for example to construct very highly overdefined en-
codings of ECDL problem with properties of type limK→∞ F/T = 1 and some
other “density” properties. Some early attempts to achieve this can be found in
[24] which paper also shows that there are some very substantial difficulties to
make this sort of approach work.
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5 Conclusion

In this paper we compare different known techniques for solving non-linear alge-
braic equations in algebraic cryptanalysis and show that they all can be seen as
a race between two different quantities one of which grows faster. We illustrate
this with examples derived from both symmetric and asymmetric cryptanalysis.
The crucial question is the possibility to accurately predict the behavior of such
attacks and that they will later switch to another curve and a phase transitions
will occur. Now the question is can we do better than just contemplate these
transitions? In this paper we point out that there exist a second somewhat more
general way of formulating algebraic attacks, where the attacker plays a more
active role. This is the question of algebraic coding which did NOT so far have
great success in cryptographic literature, and was frequently ignored as a trivial
first step, or rejected in some inefficient/redundant attack methods.

We point out that this problem of finding a “good”8 algebraic coding was so
far poorly studied. Yet it gives the attacker a very considerable degree of freedom,
especially if we allow the coding to be redundant. We need to pay more attention
to hard combinatorial optimization problems such as finding non-trivial redun-
dant representations leading to important simplifications in algebraic description
complexity. The bottom line is that we open the possibilities to invent a number
of new ”out-of-the-box” attacks with non-trivial à priori coding steps. For exam-
ple multiplicative complexity and other S-box optimizations lead to some quite
competitive attacks on block ciphers [5, 16, 14]. The primary challenge for the
future remains how to code and re-code cryptanalysis problems in better ways.
The attacker is not merely hoping that some interesting equations exist [29, 4]
or will be found by our attack [11], which approach to software cryptanalysis
we called “plug and pray” in [24], but how to “engineer” an attack where new
“interesting” equations will exist.

For example many authors have tried to develop an index calculus or a
point splitting attack on the ECDL problem through the use of so called Se-
maev/Summation polynomials [35, 30] without great success. In this paper and
in [24] we suggest that the degree and complexity of ECC coding problems can
be reduced with redundant coding of variables. Better algebraiz-ation through
simpler polynomials is however is probably by far not enough to solve hard
cryptanalysis problems. More attention needs also be paid to questions such
as “densely connected equations topology” cf. Section 6 and 6.7 in [24], and
additional “constraints coding” questions, cf. Part VI in [24].
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