444 research outputs found

    Passive maternal antibody transfer to eggs and larvae of tiger grouper (Epinephelus fuscoguttatus)

    Get PDF
    The immune response of Tiger grouper (E. fuscoguttatus) broodstocks and its passive transfer of maternal antibodies to eggs and larvae were evaluated following vaccination with an inactivated V.harveyi. Tiger grouper broodstock (mean BW 8.66 ± 0.09 kg, n=19) were vaccinated intraperitoneally (IP) and followed by a booster two weeks post vaccination, while Controlled Non-vaccinated (CG) broodstock were IP injected with PBS. The serum antibody level against V.harveyi was monitored for two weeks on post-vaccination and monthly up to 5 months post-vaccination. This study showed that the Vaccinated Group (VG) broodstock induced significantly (P<0.05) higher in specific IgM antibody level against V.harveyi as compared to the CG, which in turn induced a marked increased (P<0.05) in specific IgM in eggs and larvae produced from VG broodstock at 14 weeks post vaccination. The findings from this study suggested that inactivated V.harveyi vaccines were able to stimulate the immune response in broodstock and passively transferred the maternal antibody to their eggs and larvae

    A novel, lineage-primed prestalk cell subtype involved in the morphogenesis of D-discoideum

    Get PDF
    Dictyostelium morphogenesis requires the tip, which acts as an organizer and conducts orchestrated cell movement and cell differentiation. At the slug stage the tip region contains prestalk A (pstA) cells, which are usually recognized by their expression of reporter constructs that utilize a fragment of the promoter of the ecmA gene. Here, using the promoter region of the o-methyl transferase 12 gene (omt12) to drive reporter expression, we demonstrate the presence, also within the pstA region, of a novel prestalk cell subtype: the pstVA cells. Surprisingly, a sub-population of the vegetative cells express a pstVA: GFP marker and, sort out to the tip, both when developing alone and when co-developed with an excess of unmarked cells. The development of such a purified GFP-marked population is greatly accelerated: by precocious cell aggregation and tip formation with accompanying precocious elevation of developmental gene transcription. We therefore suggest that the tip contains at least two prestalk cell subtypes: the developmentally-specified pstA cells and the lineage-primed pstVA cells. It is presumably the pstVA cells that play the dominant role in morphogenesis during the earlier stages of development. The basis for the lineage priming is, however, unclear because we can find no correlation between pstVA differentiation and nutrient status during growth or cell cycle position at the time of starvation, the two known determinants of probable cell fate

    Non-resonant direct p- and d-wave neutron capture by 12C

    Get PDF
    Discrete gamma-rays from the neutron capture state of 13C to its low-lying bound states have been measured using pulsed neutrons at En = 550 keV. The partial capture cross sections have been determined to be 1.7+/-0.5, 24.2+/-1.0, 2.0+/-0.4 and 1.0+/-0.4 microb for the ground (1/2-), first (1/2+), second (3/2-) and third (5/2+) excited states, respectively. From a comparison with theoretical predictions based on the non-resonant direct radiative capture mechanism, we could determine the spectroscopic factor for the 1/2+ state to be 0.80 +/- 0.04, free from neutron-nucleus interaction ambiguities in the continuum. In addition we have detected the contribution of the non-resonant d-wave capture component in the partial cross sections for transitions leading to the 1/2- and 3/2- states. While the s-wave capture dominates at En < 100 keV, the d-wave component turns out to be very important at higher energies. From the present investigation the 12C(n,gamma)13C reaction rate is obtained for temperatures in the range 10E+7 - 10E+10 K.Comment: Accepted for publication in Phys. Rev. C. - 16 pages + 8 figure

    Regeneration versus scarring in vertebrate appendages and heart

    Get PDF
    Injuries to complex human organs, such as the limbs and the heart, result in pathological conditions, for which we often lack adequate treatments. While modern regenerative approaches are based on the transplantation of stem cell-derived cells, natural regeneration in lower vertebrates, such as zebrafish and newts, relies predominantly on the intrinsic plasticity of mature tissues. This property involves local activation of the remaining material at the site of injury to promote cell division, cell migration and complete reproduction of the missing structure. It remains an unresolved question why adult mammals are not equally competent to reactivate morphogenetic programmes. Although organ regeneration depends strongly on the proliferative properties of cells in the injured tissue, it is apparent that various organismic factors, such as innervation, vascularization, hormones, metabolism and the immune system, can affect this process. Here, we focus on a correlation between the regenerative capacity and cellular specialization in the context of functional demands, as illustrated by appendages and heart in diverse vertebrates. Elucidation of the differences between homologous regenerative and non-regenerative tissues from various animal models is essential for understanding the applicability of lessons learned from the study of regenerative biology to clinical strategies for the treatment of injured human organs

    Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown camelina sativa L. Crantz

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Camelina (Camelina sativa </it>L. Crantz) is a non-food oilseed crop which holds promise as an alternative biofuel energy resource. Its ability to grow in a variety of climatic and soil conditions and minimal requirements of agronomical inputs than other oilseed crops makes it economically viable for advanced biofuel production. We designed a study to investigate the effect of paclobutrazol [2RS, 3RS)-1-(4-Chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol] (PBZ), a popular plant growth regulator, on the seed and oil yield of <it>Camelina sativa </it>(cv. Celine).</p> <p>Results</p> <p>A field-based micro-trial setup was established in a randomized block design and the study was performed twice within a span of five months (October 2010 to February 2011) and five different PBZ treatments (Control: T<sub>0</sub>; 25 mg l<sup>-1</sup>: T<sub>1</sub>; 50 mg l<sup>-1</sup>: T<sub>2</sub>; 75 mg l<sup>-1</sup>: T<sub>3</sub>; 100 mg l<sup>-1</sup>: T<sub>4</sub>; 125 mg l<sup>-1</sup>: T<sub>5</sub>) were applied (soil application) at the time of initiation of flowering. PBZ at 100 mg l<sup>-1 </sup>concentration (T<sub>4</sub>) resulted in highest seed and oil yield by 80% and 15%, respectively. The seed yield increment was mainly due to enhanced number of siliques per plant when compared to control. The PBZ - treated plants displayed better photosynthetic leaf gas exchange characteristics, higher chlorophyll contents and possessed dark green leaves which were photosynthetically active for a longer period and facilitated higher photoassimilation.</p> <p>Conclusion</p> <p>We report for the first time that application of optimized PBZ dose can be a potential strategy to achieve higher seed and oil yield from <it>Camelina sativa </it>that holds great promise as a biofuel crop in future.</p

    Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels?

    Get PDF
    BACKGROUND: In the Arctic, polar bears (Ursus maritimus) bio-accumulate mercury as they prey on polluted ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). Studies have shown that polar bears from East Greenland are among the most mercury polluted species in the Arctic. It is unknown whether these levels are toxic to liver and kidney tissue. METHODS: We investigated the histopathological impact from anthropogenic long-range transported mercury on East Greenland polar bear liver (n = 59) and kidney (n = 57) tissues. RESULTS: Liver mercury levels ranged from 1.1–35.6 μg/g wet weight and renal levels ranged from 1–50 μg/g wet weight, of which 2 liver values and 9 kidney values were above known toxic threshold level of 30 μg/g wet weight in terrestrial mammals. Evaluated from age-correcting ANCOVA analyses, liver mercury levels were significantly higher in individuals with visible Ito cells (p < 0.02) and a similar trend was found for lipid granulomas (p = 0.07). Liver mercury levels were significantly lower in individuals with portal bile duct proliferation/fibrosis (p = 0.007) and a similar trend was found for proximal convoluted tubular hyalinisation in renal tissue (p = 0.07). CONCLUSION: Based on these relationships and the nature of the chronic inflammation we conclude that the lesions were likely a result of recurrent infections and ageing but that long-term exposure to mercury could not be excluded as a co-factor. The information is important as it is likely that tropospheric mercury depletion events will continue to increase the concentrations of this toxic heavy metal in the Sub Arctic and Arctic marine food webs

    Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells

    Get PDF
    We describe a protocol for the generation of a functional and transplantable corneal epithelium derived from human induced pluripotent stem (iPS) cells. When this protocol is followed, a proportion of iPS cells spontaneously form circular colonies, each of which is composed of four concentric zones. Cells in these zones have different morphologies and immunostaining characteristics, resembling neuroectoderm, neural crest, ocular-surface ectoderm, or surface ectoderm. We have named this 2D colony a 'SEAM' (self-formed ectodermal autonomous multizone), and previously demonstrated that cells within the SEAM have the potential to give rise to anlages of different ocular lineages, including retinal cells, lens cells, and ocular-surface ectoderm. To investigate the translational potential of the SEAM, cells within it that resemble ocular-surface epithelia can be isolated by pipetting and FACS sorting into a population of corneal epithelial-like progenitor cells. These can be expanded and differentiated to form an epithelial layer expressing K12 and PAX6, and able to recover function in an animal model of corneal epithelial dysfunction after surgical transplantation. The whole protocol, encompassing human iPS cell preparation, autonomous differentiation, purification, and subsequent differentiation, takes between 100 and 120 d, and is of potential use to researchers with an interest in eye development and/or ocular-surface regeneration. Experience with human iPS cell culture and sorting via FACS will be of benefit for researchers performing this protocol

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Targeted Deletion of p73 in Mice Reveals Its Role in T Cell Development and Lymphomagenesis

    Get PDF
    Transcriptional silencing of the p73 gene through methylation has been demonstrated in human leukemias and lymphomas. However, the role of p73 in the malignant process remains to be explored. We show here that p73 acts as a T cell-specific tumor suppressor in a genetically defined mouse model, and that concomitant ablation of p53 and p73 predisposes mice to an increased incidence of thymic lymphomas compared to the loss of p53 alone. Our results demonstrate a causal role for loss of p73 in progression of T cell lymphomas to the stage of aggressive, disseminated disease. We provide evidence that tumorigenesis in mice lacking p53 and p73 proceeds through mechanisms involving altered patterns of gene expression, defects in early T cell development, impaired apoptosis, and the ensuing accumulation of chromosomal aberrations. Collectively, our data imply that tumor suppressive properties of p73 are highly dependent on cellular context, wherein p73 plays a major role in T cell development and neoplasia
    corecore