118 research outputs found

    Prokineticin 2 Is a Hypothalamic Neuropeptide That Potently Inhibits Food Intake

    Get PDF
    OBJECTIVE-Prokineticin 2 (PK2) is a hypothalamic neuropeptide expressed in central nervous system areas known to be involved in food intake. We therefore hypothesized that PK2 plays a role in energy homeostasis. RESEARCH DESIGN AND METHODS - We investigated the effect of nutritional status on hypothalamic PK2 expression and effects of PK2 on the regulation of food intake by intracerebro-ventricular (ICV) injection of PK2 and anti-PK2 antibody. Subsequently, we investigated the potential mechanism of action by determining sites of neuronal activation after ICV injection of PK2, the hypothalamic site of action of PK2, and interaction between PK2 and other hypothalamic neuropeptides regulating energy homeostasis. To investigate PK2's potential as a therapeutic target, we investigated the effect of chronic administration in lean and obese mice. RESULTS - Hypothalamic PK2 expression was reduced by fasting. ICV administration of PK2 to rats potently inhibited food intake, whereas anti-PK2 antibody increased food intake, suggesting that PK2 is an anorectic neuropeptide. ICV administration of PK2 increased c-fos expression in proopiomelanocortin neurons of the arcuate nucleus (ARC) of the hypothalamus. In keeping with this, PK2 administration into the ARC reduced food intake and PK2 increased the release of α-melanocyte-stimulating hormone (α-MSH) from ex vivo hypothalamic explants. In addition, ICV coadministration of the α-MSH antagonist agouti-related peptide blocked the anorexigenic effects of PK2. Chronic peripheral administration of PK2 reduced food and body weight in lean and obese mice. CONCLUSIONS - This is the first report showing that PK2 has a role in appetite regulation and its anorectic effect is mediated partly via the melanocortin system. © 2010 by the American Diabetes Association

    A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control

    Get PDF
    Obesity, and resultant health hazards which include diabetes, cardiovascular disease and metabolic syndrome, are worldwide medical problems. Control of diet and exercise are cornerstones of the management of excess weight. Foods with a low glycemic index may reduce the risk of diabetes and heart disease as well as their complications. As an alternative to a low glycemic index diet, there is a growing body of research into products that slow the absorption of carbohydrates through the inhibition of enzymes responsible for their digestion. These products include alpha-amylase and glucosidase inhibitors. The common white bean (Phaseolus vulgaris) produces an alpha-amylase inhibitor, which has been characterized and tested in numerous clinical studies. A specific and proprietary product named Phase 2® Carb Controller (Pharmachem Laboratories, Kearny, NJ) has demonstrated the ability to cause weight loss with doses of 500 to 3000 mg per day, in either a single dose or in divided doses. Clinical studies also show that Phase 2 has the ability to reduce the post-prandial spike in blood glucose levels. Experiments conducted incorporating Phase 2 into food and beverage products have found that it can be integrated into various products without losing activity or altering the appearance, texture or taste of the food. There have been no serious side effects reported following consumption of Phase 2. Gastro-intestinal side effects are rare and diminish upon extended use of the product. In summary, Phase 2 has the potential to induce weight loss and reduce spikes in blood sugar caused by carbohydrates through its alpha-amylase inhibiting activity

    Association of urinary bisphenols and triclosan with thyroid function during early pregnancy

    Get PDF
    © 2019 The Authors. Background Bisphenols and triclosan are considered as potential thyroid disruptors. While mild alterations in maternal thyroid function can result in adverse pregnancy and child developmental outcomes, there is still uncertainty whether bisphenols or triclosan can interfere with thyroid function during pregnancy. Objectives We aimed to investigate the association of urinary bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF) and triclosan with early pregnancy thyroid function. Methods This study was embedded in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy study (SELMA), a population-based prospective pregnancy cohort. In total, 1996 participants were included in the current study. Maternal urinary concentrations of three bisphenols and triclosan, collected at median (95% range) 10 (6–14) weeks of pregnancy as well as serum concentrations of thyroid stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), total thyroxine (TT4), and total triiodothyronine (TT3) were measured. Results Higher BPA levels were associated with lower TT4 concentrations (non-monotonic, P = 0.03), a lower FT4/FT3 ratio (β [SE] -0.02 [0.01], P = 0.03) and a lower TT4/TT3 ratio (β [SE] -0.73 [0.27], P = 0.008). Higher BPF levels were associated with a higher FT3 (β [SE] 0.01 [0.007], P = 0.04). There were no associations between other bisphenols or triclosan and absolute TSH, (F)T4 or (F)T3 concentrations. The association of BPA with thyroid function differed with gestational age. The negative association of BPA with FT4/FT3 and TT4/TT3 ratios was only apparent in early but not late gestation (P for interaction: 0.003, 0.008, respectively). Conclusion These human data during pregnancy substantiate experimental findings suggesting that BPA could potentially affect thyroid function and deiodinase activities in early gestation.European Union of Medical Specialists; European Union's Horizon 2020 Programme for research; echnological development and demonstration; Swedish Research Council; County Council of Värmland, Swede

    Arbeiten zur Züchtung krebsresistenter Kartoffeln

    No full text

    Conformational dynamics in a truncated epidermal growth factor receptor ectodomain

    No full text
    Structural studies have revealed two forms of the monomeric epidermal growth factor receptor (EGFR) ectodomain: a compact (tethered) form stabilized by interdomain interactions and an extended (untethered) form in the presence of ligand. An important question is whether the ligand induces a conformational transition from a tethered to untethered form or whether there is a preexisting conformational equilibrium between tethered and untethered states. To distinguish between these two possibilities, we investigated a truncated receptor, EGFR501 (spanning residues 1-501), that contains the minimal elements required for high-affinity ligand binding in solution. Conformational transitions and dynamics were inferred by means of fluorescence from five internal tryptophan residues that are located within or close to the ligand-binding domains of EGFR501. A preexisting conformational equilibrium between tethered and untethered states in EGFR501 was deduced from (1) the nonlinear Arrhenius temperature dependence of fluorescence and (2) fluorescence polarization showing independently mobile domains. In contrast, the ligand EGFR501 complex revealed a linear Arrhenius temperature dependence of fluorescence and increased fluorescence polarization due to a lack of significant interdomain motions. The data suggest that the role of the ligand is to trap the EGFR501 in the untethered state that is transiently formed in solution through a preexisting conformational equilibrium
    corecore