155 research outputs found

    MRI in soils: determination of water concent changes due to root water uptake by means of a multi-slice-multi-echo sequence (MSME)

    Get PDF
    Root water uptake by ricinus communis (castor bean) in fine sand was investigated using MRI with multiecho sampling. Before starting the experiments the plants germinated and grew for 3 weeks in a cylindrical container with a diameter of 9 cm. Immediately before the MRI experiments started, the containers were water-saturated and sealed, so water content changes were only caused by root water uptake. In continuation of a preceding work, where we applied SPRITE we tested a multi-echo multi-slice sequence (MSME). In this approach, the water content was imaged by setting TE = 6.76 ms and nE = 128 with an isotropic resolution of 3.1mm. We calculated the water content maps by biexponential fitting of the multi-slice echo train data and normalisation on reference cuvettes filled with glass beads and 1 mM NiCl2 solution. The water content determination was validated by comparing to mean gravimetric water content measurements. By coregistration with the root architecture, visualised by a 3D fast spin echo sequence (RARE), we conclude that the largest water content changes occurred in the neighbourhood of the roots and in the upper layers of the soil

    Need-based resource allocation: different need indicators, different results?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A key policy objective in most publicly financed health care systems is to allocate resources according to need. Many jurisdictions implement this policy objective through need-based allocation models. To date, no gold standard exists for selecting need indicators. In the absence of a gold standard, sensitivity of the choice of need indicators is of concern. The primary objective of this study was to assess the consistency and plausibility of estimates of per capita relative need for health services across Canadian provinces based on different need indicators.</p> <p>Methods</p> <p>Using the 2000/2001 Canadian Community Health Survey, we estimated relative per capita need for general practitioner, specialist, and hospital services by province using two approaches that incorporated a different set of need indicators: (1) demographics (age and sex), and (2) demographics, socioeconomic status, and health status. For both approaches, we first fitted regression models to estimate standard utilization of each of three types of health services by indicators of need. We defined the standard as average levels of utilization by needs indicators in the national sample. Subsequently, we estimated expected per capita utilization of each type of health services in each province. We compared these estimates of per capita relative need with premature mortality in each province to check their face validity.</p> <p>Results</p> <p>Both approaches suggested that expected relative per capita need for three services vary across provinces. Different approaches, however, yielded different and inconsistent results. Moreover, provincial per capita relative need for the three health services did not always indicate the same direction of need suggested by premature mortality in each province. In particular, the two approaches suggested Newfoundland had less need than the Canadian average for all three services, but it had the highest premature mortality in Canada.</p> <p>Conclusion</p> <p>Substantial differences in need for health care may exist across Canadian provinces, but the direction and magnitude of differences depend on the need indicators used. Allocations from models using survey data lacked face validity for some provinces. These results call for the need to better understand the biases that may result from the use of survey data for resource allocation.</p

    Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci

    Get PDF
    Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients

    A Glutamic Acid-Rich Protein Identified in Verticillium dahliae from an Insertional Mutagenesis Affects Microsclerotial Formation and Pathogenicity

    Get PDF
    Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. The life cycle of V. dahliae includes three vegetative phases: parasitic, saprophytic and dormant. The dormant microsclerotia are the primary infectious propagules, which germinate when they are stimulated by root exudates. In this study, we report the first application of Agrobacterium tumefaciens-mediated transformation (ATMT) for construction of insertional mutants from a virulent defoliating isolate of V. dahliae (V592). Changes in morphology, especially a lack of melanized microsclerotia or pigmentation traits, were observed in mutants. Together with the established laboratory unimpaired root dip-inoculation approach, we found insertional mutants to be affected in their pathogenicities in cotton. One of the genes tagged in a pathogenicity mutant encoded a glutamic acid-rich protein (VdGARP1), which shared no significant similarity to any known annotated gene. The vdgarp1 mutant showed vigorous mycelium growth with a significant delay in melanized microsclerotial formation. The expression of VdGARP1 in the wild type V529 was organ-specific and differentially regulated by different stress agencies and conditions, in addition to being stimulated by cotton root extract in liquid culture medium. Under extreme infertile nutrient conditions, VdGARP1 was not necessary for melanized microsclerotial formation. Taken together, our data suggest that VdGARP1 plays an important role in sensing infertile nutrient conditions in infected cells to promote a transfer from saprophytic to dormant microsclerotia for long-term survival. Overall, our findings indicate that insertional mutagenesis by ATMT is a valuable tool for the genome-wide analysis of gene function and identification of pathogenicity genes in this important cotton pathogen

    Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modeling, and Data Assimilation

    Full text link
    In this special issue, we present recent scientific work that analyzes the role of patterns in soil-vegetation-atmosphere (SVA) systems over a wide range of scales ranging from the pore scale up to mesoscale catchments. Specific attention is given to the development of novel data assimilation methods, noninvasive measurement techniques that allow mapping spatial patterns of state variables and fluxes, and two-way coupling of models in a scale-consistent way. "Patterns in Soil-Vegetation-Atmosphere Systems" is also the research topic of a collaborative research center (TR32) between the universities of Aachen, Bonn, and Cologne and the Forschungszentrum Julich. In this center, which is funded by the Deutsche Forschungsgemeinschaft, on the basis of an international evaluation, scientists covering a broad range of earth science disciplines are working together. During June 11-12, 2010 the center organized its first international workshop in Aachen. The contributions presented in this special issue of Vadose Zone Journal include contributions from the collaborative research center and external contributions, both from Germany and worldwide

    Magnetic Resonance Imaging Techniques for Visualization of Root Growth and Root Water Uptake Processes

    No full text
    Root growth and water uptake processes in the subsurface are hard to observe due to the opaque nature of soil. Classical methods are either invasive or restricted to model setups like two-dimensional rhizoboxes and transparent media. Therefore, during the past two decades, noninvasive methods for monitoring root-soil processes have become popular. Among these, magnetic resonance imaging (MRI)is the most versatile one. It allows one to visualize root features like anatomy and root system architecture, water content distribution in the surrounding soil, and tracer movements in soil and roots. In this chapter, the principles of MRI are introduced first, followed by a short description of necessary hardware components. The third section reviews investigations of root systems and water uptake patterns in soils using MRI and discusses the effect of experimental parameters. In the fourth section, the usage of contrast agents for the investigation of root water processes is demonstrated. This also includes our recent results on the visualization of the transport processes in root soil systems using GdDTPA as MRI contrast agent
    corecore