198 research outputs found

    Data report: Summary of revised alteration phases for PACMANUS hydrothermal field - X-ray diffraction analysis of altered felsic volcanic rocks from Holes 1188A, 1188F, 1189A and 1189B

    Get PDF
    Postcruise X-ray diffraction (XRD) data for 95 whole-rock samples from Holes 1188A, 1188F, 1189A, and 1189B are presented. The samples represent alteration types recovered during Leg 193. The data set is incorporated into the shipboard XRD data set. Based on the newly obtained XRD data, distribution of alteration phases were redrawn for Ocean Drilling Program Sites 1188 and 1189

    Alteration at the ultramafic-hosted Logatchev hydrothermal field: Constraints from trace element and Sr-O isotope data

    Get PDF
    Serpentinized peridotite and gabbronorite represent the host rocks to the active, ultramafic-hosted Logatchev hydrothermal field at the Mid-Atlantic Ridge. We use trace element, δ18O and 87Sr/86Sr data from bulk rock samples and mineral separates in order to constrain the controls on the geochemical budget within the Logatchev hydrothermal system. The trace element data of serpentinized peridotite show strong compositional variations indicating a range of processes. Some peridotites experienced geochemical modifications associated with melt-rock interaction processes prior to serpentinization, which resulted in positive correlations of increasing high field strength element (HFSE) concentrations and light rare earth element (LREE) contents. Other serpentinites and lizardite mineral separates are enriched in LREE, lacking a correlation with HFSE due to interaction with high-temperature, black-smoker type fluids. The enrichment of serpentinites and lizardite separates in trace elements, as well as locally developed negative Ce-anomalies, indicate that interaction with low-T ambient seawater is another important process in the Logatchev hydrothermal system. Hence, mixing of high-T hydrothermal fluids during serpentinization and/or re-equilibration of O-isotope signatures during subsequent low-T alteration is required to explain the trace element and δ18O temperature constraints. Highly radiogenic 87Sr/86Sr signatures of serpentinite and lizardite separates provide additional evidence for interaction with seawater-derived fluids. Sparse talc alteration at the Logatchev site are most likely caused by Si-metasomatism of serpentinite associated with the emplacement of shallow gabbro intrusion(s) generating localized hydrothermal circulation. In summary the geochemistry of serpentinites from the Logatchev site document subsurface processes and the evolution of a seafloor ultramafic hydrothermal system

    A Window into Practice: Examining Elementary Writing Methods Instruction

    Get PDF
    We know very little about what happens in elementary literacy methods courses, particularly those that focus on writing instruction. In this study, we offer a window into writing methods instruction, examining three pedagogies of practice used by experienced teacher educators (TEs) across one U.S. state —representations, decompositions, and approximations of practice (Grossman, Compton, Igra, Ronfeldt, Shahan, & Williamson, 2009). We found a variety of ways that instructors use these pedagogies of practice, both in isolation and in combination, in their instruction. We provide implications and suggestions for the support and development of elementary writing methods TEs

    Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33'S

    Get PDF
    Detailed exploration with remotely operated and autonomous deep submergence vehicles has revealed, at 9 degrees 33'S, the presence of the southernmost active hydrothermal field known so far on the Mid-Atlantic Ridge. The size of the hydrothermal field, which we have named "Lilliput", is about 1000 m x 250 m. It lies in a water depth of 1500 m on a ridge segment (Segment A3) with considerably thickened crust of 11 km. Four relatively small diffuse vent sites occur on a large young (estimated <100 years old) lava flow, partly covering the flow with hydrothermal Fe-oxide/hydroxide sediments. Based on homogeneous major element compositions of ca. 25 lava samples, this flow covers an area of at least 5 km x 0.6 km. The lava flow erupted from a series of parallel fissures at the western edge of the flow and a volcanic ridge consisting of up to 30 m high pillow mounds. The volcanic ridge probably represents the surface expression of an underlying dike which fed the flow. Several drained lava pond structures were observed within the flow but only one shows hydrothermal activity. The hydrothermal venting and precipitation of abundant Fe-oxyhydroxides appear to be related to the young diking and eruption event and the four different hydrothermally active sites of the Lilliput field lie along and almost equidistant from the eastern flank of the supposed dike. Although a hydrothermal plume some 500 m above the seafloor was found in two consecutive years (2005 and 2006), no high-temperature venting associated with Lilliput has been found. in agreement with findings at other ridges with thick crust such as Reykjanes. High magma supply rate and frequent diking and eruption events may lead to hot hydrothermal vents being rare in slow-spreading segments with thick crust whereas diffuse venting is abundant. Interestingly, the fauna at the Lilliput vents largely consists of small and apparently juvenile mussels (Bathymodiolus sp.) and did not show any signs of growth during the four years of continuing observations possibly reflecting pulsing hydrothermal activity

    Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209) : implications for fluid/rock interaction in slow spreading environments

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 234 (2006): 179-210, doi:10.1016/j.chemgeo.2006.04.011.Abyssal peridotite from the 15°20’N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe2+/Fe3+ ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high aSiO2 fluids causing the development of smooth, LREE-enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc

    Compositional variation and 226Ra-230Th model ages of axial lavas from the southern Mid-Atlantic Ridge, 8°48′S

    Get PDF
    We present geological observations and geochemical data for the youngest volcanic features on the slow-spreading Mid-Atlantic Ridge at 8°48'S that shows seismic evidence for a thickened crust and excess magma formation. Young lava flows with high sonar reflectivity cover about 14 km2 in the axial rift and were probably erupted from two axial volcanic ridges each of about 3 km in length. Three different lava units occur along an about 11 km long portion of the ridge, and lavas from the northern axial volcanic ridge differ from those of the southern axial volcanic ridge and surrounding lava flows. Basalts from the axial rift flanks and from a pillow mound within the young flows are more incompatible element depleted than those from the young volcanic field. Lavas from this volcanic area have 226Ra-230Th disequilibria model ages of 1,000 and 4,000 years whereas the older lavas from the rift flank and the pillow mound, but also some of the lava field, are older than 8,000 years. Glasses from the northern and southern ends of the southern lava unit indicate up to 100°C cooler magma temperatures than in the center and increased assimilation of hydrothermally altered material. The compositional heterogeneity on a scale of 3 km suggests small magma batches rising vertically from the mantle to the surface without significant lateral flow and mixing. The observations on the 8°48'S lava field support the model of low frequency eruptions from single ascending magma batches that has been developed for slow-spreading ridges
    corecore