116 research outputs found
Cost-utility of a visiting service for older widowed individuals: Randomised trial
Background. Despite a growing understanding of the effectiveness of bereavement interventions and the groups that benefit most from them, we know little about the cost-effectiveness of bereavement interventions. Methods. We conducted a cost-utility analysis alongside a randomized clinical trial on a visiting service for older widowed individuals (n = 110) versus care as usual (CAU; n = 106). The visiting service is a selective bereavement intervention that offers social support to lonely widows and widowers by a trained volunteer. Participants were contacted 6-9 months post-loss. Eleven percent of all contacted persons responded and eight percent participated in the trial. The primary outcome measure was quality adjusted life years (QALYs) gained (assessed with the EQ-5D), which is a generic measure of health status. Costs were calculated from a societal perspective excluding costs arising from productivity losses. Using the bootstrap method, we obtained the incremental cost utility ratio (ICUR), projected these on a cost-utility plane and presented as an acceptability curve. Results. Overall, the experimental group demonstrated slightly better results against slightly higher costs. Whether the visiting service is acceptable depends on the willingness to pay: at a willingness to pay equal to zero per QALY gained, the visiting service has a probability of 31% of being acceptable; beyond €20,000, the visiting service has a probability of 70% of being more acceptable than CAU. Conclusion. Selective bereavement interventions like the visiting service will not produce large benefits from the health economic point of view, when targeted towards the entire population of all widowed individuals. We recommend that in depth analyses are conducted to identify who benefits most from this kind of interventions, and in what subgroups the incremental cost-utility is best. In the future bereavement interventions are then best directed to these groups. Trial registration. Controlled trials ISRCTN17508307. © 2008 Onrust et al; licensee BioMed Central Ltd
Changing the classroom climate to lower the threshold for child abuse and neglect self-disclosure: a non-randomized cluster controlled trial
Health and self-regulatio
Earthworm activity and availability for meadow birds is restricted in intensively managed grasslands
Earthworms are an important prey for the endangered meadow birds of northwest Europe. Although intensive grassland management with high manure inputs generally promotes earthworm abundance, it may reduce the effective food availability for meadow birds through desiccation of the topsoil, which causes earthworms to remain deeper in the soil. We studied the response of Red Worm Lumbricus rubellus, a detritivore, and Grey Worm Aporrectodea caliginosa, a geophage, to soil moisture profiles in the field and under experimental conditions. Surfacing earthworms were counted weekly in eight intensively managed grasslands (treated with high inputs of slurry by slit injection) with variable groundwater tables in the Netherlands. At each count, soil penetration resistance, soil moisture tension and groundwater level were measured, while air temperature and humidity were obtained from a nearby weather station. The response to variation in the vertical distribution of soil moisture was also experimentally studied in the two earthworm species. In the field, earthworms’ surfacing activity at night was negatively associated with soil moisture tension and positively by relative air humidity. Surprisingly, there was no effect of groundwater level; an important management variable in meadow bird conservation. Under experimental conditions, both L. rubellus and A. caliginosa moved to deeper soil layers (>20 cm) in drier soil moisture treatments, avoiding the upper layer when moisture levels dropped below 30%. Synthesis and applications. We propose that in intensively managed grasslands with slurry application, topsoil desiccation reduces earthworm availability for meadow birds. This can be counteracted by keeping soil moisture tensions of the top soil above −15 kPa. We suggest that the late raising of groundwater tables in spring and the disturbance of the soil by slit injection of slurry increase topsoil desiccation. This decreases earthworm availability when it matters most for breeding meadow birds. Meadow bird conservation will benefit from revised manure application strategies that promote earthworm activity near or at the soil surface.</p
In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes.
Natural killer (NK) receptor signaling can lead to reduced cytotoxicity by NK cells and cytolytic T lymphocytes (CTLs) in vitro. Whether T cells are inhibited in vivo remains unknown, since peptide antigen-specific CD8(+) T cells have so far not been found to express NK receptors in vivo. Here we demonstrate that melanoma patients may bear tumor-specific CTLs expressing NK receptors. The lysis of melanoma cells by patient-derived CTLs was inhibited by the NK receptor CD94/NKG2A. Thus, tumor-specific CTL activity may be decreased through NK receptor triggering in vivo
Prognostication using SpO(2)/FiO(2) in invasively ventilated ICU patients with ARDS due to COVID-19-Insights from the PRoVENT-COVID study
Background: The SpO(2)/FiO(2) is a useful oxygenation parameter with prognostic capacity in patients with ARDS. We investigated the prognostic capacity of SpO(2)/FiO(2) for mortality in patients with ARDS due to COVID-19. Methods: This was a post-hoc analysis of a national multicenter cohort study in invasively ventilated patients with ARDS due to COVID-19. The primary endpoint was 28-day mortality. Results: In 869 invasively ventilated patients, 28-day mortality was 30.1%. The SpO(2)/FiO(2) on day 1 had no prognostic value. The SpO(2)/FiO(2) on day 2 and day 3 had prognostic capacity for death, with the best cut-offs being 179 and 199, respectively. Both SpO(2)/FiO(2) on day 2 (OR, 0.66 [95%-CI 0.46-0.96]) and on day 3 (OR, 0.70 [95%-CI 0.51-0.96]) were associated with 28-day mortality in a model corrected for age, pH, lactate levels and kidney dysfunction (AUROC 0.78 [0.76-0.79]). The measured PaO2/FiO(2) and the PaO2/FiO(2) calculated from SpO(2)/FiO(2) were strongly correlated (Spearman's r = 0.79). Conclusions: In this cohort of patients with ARDS due to COVID-19, the SpO(2)/FiO(2) on day 2 and day 3 are independently associated with and have prognostic capacity for 28-day mortality. The SpO(2)/FiO(2) is a useful metric for risk stratification in invasively ventilated COVID-19 patients. (C) 2021 The Authors. Published by Elsevier Inc
Accurate Protein Structure Annotation through Competitive Diffusion of Enzymatic Functions over a Network of Local Evolutionary Similarities
High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC) levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks
Evolution of a Signaling Nexus Constrained by Protein Interfaces and Conformational States
Heterotrimeric G proteins act as the physical nexus between numerous receptors that respond to extracellular signals and proteins that drive the cytoplasmic response. The Gα subunit of the G protein, in particular, is highly constrained due to its many interactions with proteins that control or react to its conformational state. Various organisms contain differing sets of Gα-interacting proteins, clearly indicating that shifts in sequence and associated Gα functionality were acquired over time. These numerous interactions constrained much of Gα evolution; yet Gα has diversified, through poorly understood processes, into several functionally specialized classes, each with a unique set of interacting proteins. Applying a synthetic sequence-based approach to mammalian Gα subunits, we established a set of seventy-five evolutionarily important class-distinctive residues, sites where a single Gα class is differentiated from the three other classes. We tested the hypothesis that shifts at these sites are important for class-specific functionality. Importantly, we mapped known and well-studied class-specific functionalities from all four mammalian classes to sixteen of our class-distinctive sites, validating the hypothesis. Our results show how unique functionality can evolve through the recruitment of residues that were ancestrally functional. We also studied acquisition of functionalities by following these evolutionarily important sites in non-mammalian organisms. Our results suggest that many class-distinctive sites were established early on in eukaryotic diversification and were critical for the establishment of new Gα classes, whereas others arose in punctuated bursts throughout metazoan evolution. These Gα class-distinctive residues are rational targets for future structural and functional studies
Clamp loader ATPases and the evolution of DNA replication machinery
Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life
- …