201 research outputs found
Microwave Lens for Polar Molecules
We here report on the implementation of a microwave lens for neutral polar
molecules suitable to focus molecules both in low-field-seeking and in
high-field-seeking states. By using the TE_11m modes of a 12 cm long
cylindrically symmetric microwave resonator, Stark-decelerated ammonia
molecules are transversally confined. We investigate the focusing properties of
this microwave lens as a function of the molecules' velocity, the detuning of
the microwave frequency from the molecular resonance frequency, and the
microwave power. Such a microwave lens can be seen as a first important step
towards further microwave devices, such as decelerators and traps.Comment: 4 pages, 3 figure
Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure
We have recently reported the successful fabrication of bright single-photon
sources based on Ag-embedded nanocone structures that incorporate InAs quantum
dots. The source had a photon collection efficiency as high as 24.6%. Here we
show the results of various types of photonic characterizations of the
Ag-embedded nanocone structures that confirm their versatility as regards a
broad range of quantum optical applications. We measure the first-order
autocorrelation function to evaluate the coherence time of emitted photons, and
the second-order correlation function, which reveals the strong suppression of
multiple photon generation. The high indistinguishability of emitted photons is
shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant
excitation, coherent population flopping is demonstrated through Rabi
oscillations. Extremely high single-photon purity with a (0) value of
0.008 is achieved with -pulse quasi-resonant excitation.Comment: 15 pages, 6 figure
Magnetic resonance peak and nonmagnetic impurities
Nonmagnetic Zn impurities are known to strongly suppress superconductivity.
We review their effects on the spin excitation spectrum in , as investigated by inelastic neutron scattering measurements.Comment: Proceedings of Mato Advanced Research Workshop BLED 2000. To appear
in Nato Science Series: B Physic
Critical temperature of an anisotropic superconductor containing both nonmagnetic and magnetic impurities
The combined effect of both nonmagnetic and magnetic impurities on the
superconducting transition temperature is studied theoretically within the BCS
model. An expression for the critical temperature as a function of potential
and spin-flip scattering rates is derived for a two-dimensional superconductor
with arbitrary in-plane anisotropy of the superconducting order parameter,
ranging from isotropic s-wave to d-wave (or any pairing state with nonzero
angular momentum) and including anisotropic s-wave and mixed (d+s)-wave as
particular cases. This expression generalizes the well-known Abrikosov-Gor'kov
formula for the critical temperature of impure superconductors. The effect of
defects and impurities in high temperature superconductors is discussed.Comment: 4 eps figure
Global hybrids from the semiclassical atom theory satisfying the local density linear response
We propose global hybrid approximations of the exchange-correlation (XC)
energy functional which reproduce well the modified fourth-order gradient
expansion of the exchange energy in the semiclassical limit of many-electron
neutral atoms and recover the full local density approximation (LDA) linear
response. These XC functionals represent the hybrid versions of the APBE
functional [Phys. Rev. Lett. 106, 186406, (2011)] yet employing an additional
correlation functional which uses the localization concept of the correlation
energy density to improve the compatibility with the Hartree-Fock exchange as
well as the coupling-constant-resolved XC potential energy. Broad energetical
and structural testings, including thermochemistry and geometry, transition
metal complexes, non-covalent interactions, gold clusters and small
gold-molecule interfaces, as well as an analysis of the hybrid parameters, show
that our construction is quite robust. In particular, our testing shows that
the resulting hybrid, including 20\% of Hartree-Fock exchange and named hAPBE,
performs remarkably well for a broad palette of systems and properties, being
generally better than popular hybrids (PBE0 and B3LYP). Semi-empirical
dispersion corrections are also provided.Comment: 12 pages, 4 figure
Effects of oral adenosine 5'-triphosphate and adenosine in enteric-coated capsules on indomethacin-induced permeability changes in the human small intestine: a randomized cross-over study
<p>Abstract</p> <p>Background</p> <p>It is well-known that nonsteroidal anti-inflammatory drugs (NSAIDs) can cause damage to the small bowel associated with disruption of mucosal barrier function. In healthy human volunteers, we showed previously that topical administration of adenosine 5'-triphosphate (ATP) by naso-intestinal tube attenuated a rise in small intestinal permeability induced by short-term challenge with the NSAID indomethacin. This finding suggested that ATP may be involved in the preservation of intestinal barrier function. Our current objective was to corroborate the favourable effect of ATP on indomethacin-induced permeability changes in healthy human volunteers when ATP is administered via enteric-coated capsules, which is a more practically feasible mode of administration. Since ATP effects may have been partly mediated through its breakdown to adenosine, effects of encapsulated adenosine were tested also.</p> <p>Methods</p> <p>By ingesting a test drink containing 5 g lactulose and 0.5 g L-rhamnose followed by five-hour collection of total urine, small intestinal permeability was assessed in 33 healthy human volunteers by measuring the urinary lactulose/rhamnose excretion ratio. Urinary excretion of lactulose and L-rhamnose was determined by fluorescent detection high-pressure liquid chromatography (HPLC). Basal permeability of the small intestine was assessed as a control condition (no indomethacin, no ATP/adenosine). As a model of increased small intestinal permeability, two dosages of indomethacin were ingested at 10 h (75 mg) and 1 h (50 mg) before ingesting the lactulose/rhamnose test drink. At 1.5 h before indomethacin ingestion, two dosages of placebo, ATP (2 g per dosage) or adenosine (1 g per dosage) were administered via enteric-coated hydroxypropyl methylcellulose (HPMC) capsules with Eudragit<sup>© </sup>L30D-55.</p> <p>Results</p> <p>Median urinary lactulose/rhamnose excretion ratio (g/g) in the control condition was 0.032 (interquartile range: 0.022–0.044). Compared to the control condition, lactulose/rhamnose ratio after ingestion of indomethacin plus placebo was significantly increased to 0.039 (0.035–0.068); P < 0.01). The indomethacin-induced increase was neither affected by administration of encapsulated ATP (0.047 (0.033–0.065)) nor adenosine (0.050 (0.030–0.067)). Differences in L/R ratios between the conditions with indomethacin plus placebo, ATP or adenosine were not significant.</p> <p>Conclusion</p> <p>In this study, either ATP or adenosine administered via enteric-coated capsules had no effect on indomethacin-induced small intestinal permeability changes in healthy human volunteers. The observed lack of effect of encapsulated ATP/adenosine may have been caused by opening of the enteric-coated supplement at a site distal from the indomethacin-inflicted site. Further studies on site-specific effectiveness of ATP/adenosine on intestinal permeability changes are warranted.</p
Energy densities in the strong-interaction limit of density functional theory
We discuss energy densities in the strong-interaction limit of density
functional theory, deriving an exact expression within the definition (gauge)
of the electrostatic potential of the exchange-correlation hole. Exact results
for small atoms and small model quantum dots are compared with available
approximations defined in the same gauge. The idea of a local interpolation
along the adiabatic connection is discussed, comparing the energy densities of
the Kohn-Sham, the physical, and the strong-interacting systems. We also use
our results to analyze the local version of the Lieb-Oxford bound, widely used
in the construction of approximate exchange-correlation functionals.Comment: 12 page
Effects of adenosine A2A receptor activation and alanyl-glutamine in Clostridium difficile toxin-induced ileitis in rabbits and cecitis in mice
<p>Abstract</p> <p>Background</p> <p>Severe <it>Clostridium difficile </it>toxin-induced enteritis is characterized by exuberant intestinal tissue inflammation, epithelial disruption and diarrhea. Adenosine, through its action on the adenosine A<sub>2A </sub>receptor, prevents neutrophillic adhesion and oxidative burst and inhibits inflammatory cytokine production. Alanyl-glutamine enhances intestinal mucosal repair and decreases apoptosis of enterocytes. This study investigates the protection from enteritis by combination therapy with ATL 370, an adenosine A<sub>2A </sub>receptor agonist, and alanyl-glutamine in a rabbit and murine intestinal loop models of <it>C. difficile </it>toxin A-induced epithelial injury.</p> <p>Methods</p> <p>Toxin A with or without alanyl-glutamine was administered intraluminally to rabbit ileal or murine cecal loops. Animals were also given either PBS or ATL 370 parenterally. Ileal tissues were examined for secretion, histopathology, apoptosis, Cxcl1/KC and IL-10.</p> <p>Results</p> <p>ATL 370 decreased ileal secretion and histopathologic changes in loops treated with Toxin A. These effects were reversed by the A<sub>2A </sub>receptor antagonist, SCH 58261, in a dose-dependent manner. The combination of ATL 370 and alanyl-glutamine significantly further decreased ileal secretion, mucosal injury and apoptosis more than loops treated with either drug alone. ATL 370 and alanyl-glutamine also decreased intestinal tissue KC and IL-10.</p> <p>Conclusions</p> <p>Combination therapy with an adenosine A<sub>2A </sub>receptor agonist and alanyl-glutamine is effective in reversing <it>C. difficile </it>toxin A-induced epithelial injury, inflammation, secretion and apoptosis in animals and has therapeutic potential for the management of <it>C. difficile </it>infection.</p
Structural Comparison of Human Mammalian Ste20-Like Kinases
BACKGROUND: The serine/threonine mammalian Ste-20 like kinases (MSTs) are key regulators of apoptosis, cellular proliferation as well as polarization. Deregulation of MSTs has been associated with disease progression in prostate and colorectal cancer. The four human MSTs are regulated differently by C-terminal regions flanking the catalytic domains. PRINCIPAL FINDINGS: We have determined the crystal structure of kinase domain of MST4 in complex with an ATP-mimetic inhibitor. This is the first structure of an inactive conformation of a member of the MST kinase family. Comparison with active structures of MST3 and MST1 revealed a dimeric association of MST4 suggesting an activation loop exchanged mechanism of MST4 auto-activation. Together with a homology model of MST2 we provide a comparative analysis of the kinase domains for all four members of the human MST family. SIGNIFICANCE: The comparative analysis identified new structural features in the MST ATP binding pocket and has also defined the mechanism for autophosphorylation. Both structural features may be further explored for inhibitors design. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1
- …