263 research outputs found

    Violation of non-interacting V\cal V-representability of the exact solutions of the Schr\"odinger equation for a two-electron quantum dot in a homogeneous magnetic field

    Full text link
    We have shown by using the exact solutions for the two-electron system in a parabolic confinement and a homogeneous magnetic field [ M.Taut, J Phys.A{\bf 27}, 1045 (1994) ] that both exact densities (charge- and the paramagnetic current density) can be non-interacting V\cal V-representable (NIVR) only in a few special cases, or equivalently, that an exact Kohn-Sham (KS) system does not always exist. All those states at non-zero BB can be NIVR, which are continuously connected to the singlet or triplet ground states at B=0. In more detail, for singlets (total orbital angular momentum MLM_L is even) both densities can be NIVR if the vorticity of the exact solution vanishes. For ML=0M_L=0 this is trivially guaranteed because the paramagnetic current density vanishes. The vorticity based on the exact solutions for the higher ML|M_L| does not vanish, in particular for small r. In the limit r0r \to 0 this can even be shown analytically. For triplets (MLM_L is odd) and if we assume circular symmetry for the KS system (the same symmetry as the real system) then only the exact states with ML=1|M_L|= 1 can be NIVR with KS states having angular momenta m1=0m_1=0 and m2=1|m_2|=1. Without specification of the symmetry of the KS system the condition for NIVR is that the small-r-exponents of the KS states are 0 and 1.Comment: 18 pages, 4 figure

    The strength of the radial-breathing mode in single-walled carbon nanotubes

    Full text link
    We show by ab initio calculations that the electron-phonon coupling matrix element M of the radial breathing mode in single-walled carbon nanotubes depends strongly on tube chirality. For nanotubes of the same diameter the coupling strength |M|^2 is up to one order of magnitude stronger for zig-zag than for armchair tubes. For (n,m) tubes M depends on the value of (n-m) mod 3, which allows to discriminate semiconducting nano tubes with similar diameter by their Raman scattering intensity. We show measured resonance Raman profiles of the radial breathing mode which support our theoretical predictions

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari

    Nitrous oxide emissions from European agriculture - An analysis of variability and drivers of emissions from field experiments

    Get PDF
    Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N<sub>2</sub>O-N ha<sup>−1</sup> yr<sup>−1</sup>, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression) in the data from the arable sites (<i>p</i> < 0.0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability of N<sub>2</sub>O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation

    Spin-polarized supercurrents for spintronics: a review of current progress

    Get PDF
    During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, π\pi-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.Comment: 95 pages, 23 Figures; published version with minor typos corrected and few references adde

    Probing high pressure properties of single wall carbon nanotubes through fullerene encapsulation

    Get PDF
    The high pressure behavior of bundled 1.35±0.1nm diameter single wall carbon nanotubes (SWNT) filled with C70 fullerenes (usually called peapods) has been investigated by Raman spectroscopy and compared with the corresponding behavior of the nonfilled SWNT. We show experimentally that two reversible pressure-induced transitions take place in the compressed bundle SWNT. The first transition, in the 2–2.5GPa range, is in good correspondence with predictions of the thermodynamic instability of the nanotube circular cross section for the studied tube diameter. An interaction between the fullerenes and the tube walls is then observed at about 3.5GPa, which evidences a progressive deformation of the tube cross section. The second transition takes place at pressures between 10 and 30GPa, and is evidenced by two effects by a strong frequency downshift of the Raman transverse modes and the concomitant disappearance of the fullerenes Raman modes in peapods. The pressure at which the second transition takes place is strongly dependent on the nature of the pressure transmitting medium. We also report irreversible effects at high pressure as the shortening of the tubes, the formation of nanostructures and the disappearance of the C70 Raman signal in some cases. Transmission electron microscopy studies are also reported supporting these transformations

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html

    Cardiac biomarkers of prognostic importance in chronic obstructive pulmonary disease

    Get PDF
    Background: Ischemic heart disease is common in COPD and associated with worse prognosis. This study aimed to investigate the presence and prognostic impact of biomarkers of myocardial injury and ischemia among individuals with COPD and normal lung function, respectively. Methods: In 2002–04, all individuals with airway obstruction (FEV1/VC &lt; 0.70, n = 993) were identified from population-based cohorts, together with age and sex-matched non-obstructive referents. At re-examination in 2005, spirometry, Minnesota-coded ECG and analyses of high-sensitivity cardiac troponin I (hs-cTnI) were performed in individuals with COPD (n = 601) and those with normal lung function (n = 755). Deaths were recorded until December 31st, 2010. Results: Hs-cTnI concentrations were above the risk stratification threshold of ≥5 ng/L in 31.1 and 24.9% of those with COPD and normal lung function, respectively. Ischemic ECG abnormalities were present in 14.8 and 13.4%, while 7.7 and 6.6% had both elevated hs-cTnI concentrations and ischemic ECG abnormalities. The 5-year cumulative mortality was higher in those with COPD than those with normal lung function (13.6% vs. 7.7%, p &lt; 0.001). Among individuals with COPD, elevated hs-cTnI both independently and in combination with ischemic ECG abnormalities were associated with an increased risk for death (adjusted hazard ratio [HR]; 95% confidence interval [CI] 2.72; 1.46–5.07 and 4.54; 2.25–9.13, respectively). Similar associations were observed also among individuals with COPD without reported ischemic heart disease. Conclusions: In this study, elevated hs-cTnI concentrations in combination with myocardial ischemia on the electrocardiogram were associated with a more than four-fold increased risk for death in a population-based COPD-cohort, independent of disease severity

    Feasibility of an in situ measurement device for bubble size and distribution

    Get PDF
    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam™, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles
    corecore