441 research outputs found

    A Variational Perspective on Generative Flow Networks

    Get PDF
    Generative flow networks (GFNs) are a class of probabilistic models for sequential sampling of composite objects, proportional to a target distribution that is defined in terms of an energy function or a reward. GFNs are typically trained using a flow matching or trajectory balance objective, which matches forward and backward transition models over trajectories. In this work we introduce a variational objective for training GFNs, which is a convex combination of the reverse- and forward KL divergences, and compare it to the trajectory balance objective when sampling from the forward- and backward model, respectively. We show that, in certain settings, variational inference for GFNs is equivalent to minimizing the trajectory balance objective, in the sense that both methods compute the same score-function gradient. This insight suggests that in these settings, control variates, which are commonly used to reduce the variance of score-function gradient estimates, can also be used with the trajectory balance objective. We evaluate our findings and the performance of the proposed variational objective numerically by comparing it to the trajectory balance objective on two synthetic tasks

    Two distinct mechanisms of interleukin-2 gene expression in human T lymphocytes

    Full text link
    Interleukin-2 (IL-2) gene regulation was investigated in primary cultures of highly purified human peripheral blood CD28+T cells. Two discrete mechanisms for induction of T-cell proliferation could be distinguished by examining cell cycle progression and the expression of the IL-2 gene. Stimulation of cells by CD3 MoAb induced only transiently expressed, small amounts of IL-2 mRNA that was completely suppressed by cyclosporine. Costimulation of T cells with CD3 MoAb and either CD28 MoAb or PMA, but not calcium ionophore, induced a 50-100-fold increased in IL-2 gene expression and secretion. High levels of IL-2 gene expression could also be achieved by stimulation with calcium ionophore and PMA or CD28 MoAb and PMA, but not by CD28 MoAb plus calcium ionophore. IL-2 gene expression and T-cell proliferation induced by CD3 MoAb plus PMA or calcium ionophore plus PMA were completely suppressible by cyclosporine. In contrast, IL-2 gene expression and T-cell proliferation induced by CD28 MoAb plus PMA were unaffected by cyclosporine. The CD28 signal was dependent on new protein synthesis. Nuclear run-on transcription assays showed that anti-CD28 did not affect lymphokine transcription. A major effect of CD28 stimulation on mRNA stability was shown by studies using actinomycin D; CD28 stimulation substantially increased the half-life of IL-2 and TNF-alpha mRNA. The effects of anti-CD28 stimulation were specific for growth factors, and thus differ from previously described effects of cycloheximide on mRNA stability. These studies suggest the existence of two biochemical pathways for the induction of IL-2 production, one that occurs at the transcriptional level and is mediated by intracellular calcium release and protein kinase C and is cyclosporine-sensitive, and one that acts post-transcriptionally, is mediated by CD28 stimulation, and is cyclosporine-resistant.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27894/1/0000314.pd

    The 4F2 heavy chain gene: a molecular model of inducible gene expression in human T cells

    Full text link
    We have utilized the human 4F2 heavy chain (4F2HC) gene as a model system in studies designed to elucidate the molecular events involved in regulating inducible gene expression during normal human T-cell activation. In previous studies we have shown that steady state levels of 4F2HC mRNA are induced 50-60-fold within 6 h of T-cell activation by phytohemagluttinin (PHA) and that the induction of 4F2HC gene expression involves both the protein kinase C and calcium-mediated activation pathways. Despite the fact that the 4F2HC gene is highly regulated in T cells, the 5' upstream region of the 4F2HC gene contains a housekeeping promoter which is G + C rich, lacks TATA or CCAAT sequences, and contains four potential binding sites for the ubiquitous Sp1 transcription factor. The major regulatory elements of the 4F2HC gene do not reside within this 5' upstream region but instead, map to the exon 1-intron 1 region of the gene. The low levels of mature 4F2HC mRNA in resting T cells result from a block to transcription elongation within the exon 1-intron 1 region of the gene rather than promoter inactivity. Phorbol ester stimulation of resting T cells induces 4F2HC gene expression by removing this block to transcription elongation. We now report that in addition to its ability to serve as a transcriptional attenuator, the 4F2HC first intron contains a powerful enhancer element which is active in a wide variety of cell types including malignant human T cells. Full enhancer activity is displayed by a 186 bp fragment of the first intron which contains binding sites for two novel nuclear proteins (NF-4FA and NF-4FB) which flank a consensus binding site for the AP-1 transcription factor. A cDNA encoding the NF-4FB enhancer binding protein has been cloned by screening a lambda gt11 cDNA library with a rabiolabelled oligonucleotide corresponding to the NF-4FB recognition sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27895/1/0000315.pd

    Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis

    Get PDF
    The process of apoptosis in immune cells like mast cells is essential to regain homeostasis after an inflammatory response. The intrinsic pathway of apoptosis is ultimately controlled by the pro-apoptotic Bcl-2 family members Bax and Bak, which upon activation oligomerize to cause increased permeabilization of the mitochondria outer membrane leading to cell death. We examined the role of Bax and Bak in cytokine deprivation-induced apoptosis in mast cells using connective tissue-like mast cells and mucosal-like mast cells derived from bax−/−, bak−/− and bax−/−bak−/− mice. Although both Bax and Bak were expressed at readily detectable protein levels, we found a major role for Bax in mediating mast cell apoptosis induced by cytokine deprivation. We analyzed cell viability by propidium iodide exclusion and flow cytometry after deprivation of vital cytokines for each mast cell population. Upon cytokine withdrawal, bak−/− mast cells died at a similar rate as wild type, whereas bax−/− and bax−/−bak−/− mast cells were partially or completely resistant to apoptosis, respectively. The total resistance seen in bax−/−bak−/− mast cells is comparable with mast cells deficient of both pro-apoptotic Bim and Puma or mast cells overexpressing anti-apoptotic Bcl-2. These results show that Bax has a predominant and Bak a minor role in cytokine deprivation-induced apoptosis in both connective tissue-like and mucosal-like mast cells

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Glucose Induces Pancreatic Islet Cell Apoptosis That Requires the BH3-Only Proteins Bim and Puma and Multi-BH Domain Protein Bax

    Get PDF
    OBJECTIVE: High concentrations of circulating glucose are believed to contribute to defective insulin secretion and beta-cell function in diabetes and at least some of this effect appears to be caused by glucose-induced beta-cell apoptosis. In mammalian cells, apoptotic cell death is controlled by the interplay of proapoptotic and antiapoptotic members of the Bcl-2 family. We investigated the apoptotic pathway induced in mouse pancreatic islet cells after exposure to high concentrations of the reducing sugars ribose and glucose as a model of beta-cell death due to long-term metabolic stress. RESEARCH DESIGN AND METHODS: Islets isolated from mice lacking molecules implicated in cell death pathways were exposed to high concentrations of glucose or ribose. Apoptosis was measured by analysis of DNA fragmentation and release of mitochondrial cytochrome c. RESULTS: Deficiency of interleukin-1 receptors or Fas did not diminish apoptosis, making involvement of inflammatory cytokine receptor or death receptor signaling in glucose-induced apoptosis unlikely. In contrast, overexpression of the prosurvival protein Bcl-2 or deficiency of the apoptosis initiating BH3-only proteins Bim or Puma, or the downstream apoptosis effector Bax, markedly reduced glucose- or ribose-induced killing of islets. Loss of other BH3-only proteins Bid or Noxa, or the Bax-related effector Bak, had no impact on glucose-induced apoptosis. CONCLUSIONS: These results implicate the Bcl-2 regulated apoptotic pathway in glucose-induced islet cell killing and indicate points in the pathway at which interventional strategies can be designed

    Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication

    The Ubiquitin-Proteasome Reporter GFPu Does Not Accumulate in Neurons of the R6/2 Transgenic Mouse Model of Huntington's Disease

    Get PDF
    Impairment of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the selective dysfunction and death of neurons in polyglutamine disorders such as Huntington's disease (HD). The fact that inclusion bodies in HD mouse models and patient brains are rich in ubiquitin and proteasome components suggests that the UPS may be hindered directly or indirectly by inclusion bodies or their misfolded monomeric or oligomeric precursors. However, studies into UPS function in various polyglutamine disease models have yielded conflicting results, suggesting mutant polyglutamine tracts may exert different effects on the UPS depending on protein context, expression level, subcellular localisation and cell-type. To investigate UPS function in a well-characterised mouse model of HD, we have crossed R6/2 HD mice with transgenic UPS reporter mice expressing the GFPu construct. The GFPu construct comprises GFP fused to a constitutive degradation signal (CL-1) that promotes its rapid degradation under conditions of a healthy UPS. Using a combination of immunoblot analysis, fluorescence and immunofluorescence microscopy studies, we found that steady-state GFPu levels were not detectably different between R6/2 and non-R6/2 brain. We observed no correlation between inclusion body formation and GFPu accumulation, suggesting no direct relationship between protein aggregation and global UPS inhibition in R6/2 mice. These findings suggest that while certain branches of the UPS can be impaired by mutant polyglutamine proteins, such proteins do not necessarily cause total blockade of UPS-dependent degradation. It is therefore likely that the relationship between mutant polyglutamine proteins and the UPS is more complex than originally anticipated
    corecore