56 research outputs found

    Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers

    Get PDF
    The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures

    Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species

    Get PDF
    The phytohormone abscisic acid (ABA) and reactive oxygen species (ROS) play critical roles in mediating abiotic stress responses in plants. It is well known that ABA is involved in the modulation of ROS levels by regulating ROS-producing and ROS-scavenging genes, but the molecular mechanisms underlying this regulation are poorly understood. Here we show that the expression of maize ABP9 gene, which encodes a bZIP transcription factor capable of binding to the ABRE2 motif in the maize Cat1 promoter, is induced by ABA, H2O2, drought and salt. Constitutive expression of ABP9 in transgenic Arabidopsis leads to remarkably enhanced tolerance to multiple stresses including drought, high salt, freezing temperature and oxidative stresses. ABP9 expressing Arabidopsis plants also exhibit increased sensitivity to exogenously applied ABA during seed germination, root growth and stomatal closure and improved water-conserving capacity. Moreover, constitutive expression of ABP9 causes reduced cellular levels of ROS, alleviated oxidative damage and reduced cell death, accompanied by elevated expression of many stress/ABA responsive genes including those for scavenging and regulating ROS. Taken together, these results suggest that ABP9 may play a pivotal role in plant tolerance to abiotic stresses by fine tuning ABA signaling and control of ROS accumulation

    Chronic arthritis in children and adolescents in two Indian health service user populations

    Get PDF
    BACKGROUND: High prevalence rates for rheumatoid arthritis, spondyloarthopathies, and systemic lupus erythematosus have been described in American Indian and Alaskan Native adults. The impact of these diseases on American Indian children has not been investigated. METHODS: We used International Classification of Diseases-9 (ICD-9) codes to search two Indian Health Service (IHS) patient registration databases over the years 1998–2000, searching for individuals 19 years of age or younger with specific ICD-9-specified diagnoses. Crude estimates for disease prevalence were made based on the number of individuals identified with these diagnoses within the database. RESULTS: Rheumatoid arthritis (RA) / juvenile rheumatoid arthritis (JRA) was the most frequent diagnosis given. The prevalence rate for JRA in the Oklahoma City Area was estimated as 53 per 100,000 individuals at risk, while in the Billings Area, the estimated prevalence was nearly twice that, at 115 per 100,000. These rates are considerably higher than those reported in the most recent European studies. CONCLUSION: Chronic arthritis in childhood represents an important, though unrecognized, chronic health challenge within the American Indian population living in the United States

    Downregulation of Chloroplast RPS1 Negatively Modulates Nuclear Heat-Responsive Expression of HsfA2 and Its Target Genes in Arabidopsis

    Get PDF
    Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants

    Research Methodologies and Business Discourse Teaching

    Get PDF
    This chapter will:; ; ; Define English for specific purposes and indicate the specific ways in which it has been influential on business discourse teaching;; ; ; Discuss the most relevant approaches to genre analysis that have been used in business discourse teaching;; ; ; Explore the most relevant approaches to critical discourse analysis and organizational rhetoric for business discourse teaching;; ; ; Identify the most relevant aspects of multimodal discourse analysis for business discourse teaching;; ; ; Provide a case study that illustrates the use of one approach to business discourse teaching, showing how practitioners can incorporate it into their classroom- or consultancy-based ideas

    How do trypanosomes change gene expression in response to the environment?

    Full text link

    An enigma in the genetic responses of plants to salt stresses

    Get PDF
    Soil salinity is one of the main factors restricting crop production throughout the world. Various salt tolerance traits and the genes controlling these traits are responsible for coping with salinity stress in plants. These coping mechanisms include osmotic tolerance, ion exclusion, and tissue tolerance. Plants exposed to salinity stress sense the stress conditions, convey specific stimuli signals, and initiate responses against stress through the activation of tolerance mechanisms that include multiple genes and pathways. Advances in our understanding of the genetic responses of plants to salinity and their connections with yield improvement are essential for attaining sustainable agriculture. Although a wide range of studies have been conducted that demonstrate genetic variations in response to salinity stress, numerous questions need to be answered to fully understand plant tolerance to salt stress. This chapter provides an overview of previous studies on the genetic control of salinity stress in plants, including signaling, tolerance mechanisms, and the genes, pathways, and epigenetic regulators necessary for plant salinity tolerance

    Genetic Services in Finland

    No full text

    Incidence and prevalence of juvenile arthritis in an urban population of southern Germany: a prospective study

    No full text
    OBJECTIVE—To ascertain the incidence and prevalence of juvenile arthritis in a German urban population.
METHODS—All 766 paediatricians, orthopaedists, and rheumatologists working in practices or outpatient clinics in 12 south German towns were asked to report all patients who consulted them for juvenile arthritis during the year 1995. Patients with continuing symptoms were followed up for 9-12 months to obtain a final diagnosis. Extended measures of quality control were taken to control for known biases.
RESULTS—Of 457 reported cases, 294 were diagnosed with para-/postinfectious arthritis (PPA), 78 with juvenile chronic arthritis (JCA), and 18 with other forms of arthritis. Half of the PPA cases were classified as transient synovitis of the hip (SH). For JCA the reported annual incidence was 6.6 and the prevalence 14.8 per 100 000 subjects under 16 years of age. For PPA the reported incidence was 76 and the prevalence 4.4 per 100 000 subjects under 16. The incidence of rheumatic fever was clearly below 1 per 100 000 people under 16. A correction model was used to control for known biases and to adjust the estimates accordingly.
CONCLUSIONS—The results of this first prospective study on the incidence and prevalence of juvenile arthritis in Germany are consistent with a retrospective study performed in the Berlin area. Based on these results it was estimated that the annual frequency of juvenile arthritis in Germany is as follows: 750-900 incident JCA cases, 21 000 incident SH cases, and 21 000 incidence cases of other forms of PPA a year. The number of incidence cases of rheumatic fever is expected to be markedly lower than 150 a year. The total prevalence is expected to be 3600-4350 JCA cases, 2250-3000 SH cases, and the same number of other forms of PPA.

    corecore