184 research outputs found

    Hydraulic Redistribution from Wet to Drying Roots of Potatoes (Solanum tubersosum L.) During Partial Rootzone Drying

    Get PDF
    Hydraulic redistribution, redistribution of water upward or downward within a soil profile through roots as a consequence of root-soil water potential gradients, can be an important mechanism in transporting chemical signals (i.e. abscisic acid) to the shoot for stomatal closure or in maintaining the root system during dry periods of partial rootzone drying (PRD). PRD involves alternate irrigation to two sides of a plant root system. The study reported here investigated the occurrence and magnitude of hydraulic redistribution in glasshouse-grown potatoes (Solanum tuberosum L.) under PRD. Deuterium labelled water was applied to only one half of the root system to field capacity at tuber initiation. The roots from the drying side of the dual pot were extracted at 3, 6, 12, 18 and 24 h following watering by the dry sieving method. Water from the roots was extracted by azeotropic distillation and analysed for hydrogen isotope ratios. Hydraulic redistribution occurred the most at night when stomatal conductance was considerably lower and leaf water potential was higher (less negative). The magnitude of the redistributed water, however, did not exceed 3.5%, indicating limited water redistribution under PRD. The observed water redistribution would probably be of little significance for the survival of roots present in the upper drier portion of the soil under higher water demanding conditions but its role in sending the chemical signals to the shoot to conserve water by reducing transpiration would be of particular significance during drying periods of partial rootzone drying

    はじめに : 人文社会科学研究科研究プロジェクト報告書第237集『起業家教育に関する実践的研究』

    Get PDF
    千葉大学大学院人文社会科学研究科研究プロジェクト報告書第237集『起業家教育に関する実践的研究』 藤川 大祐 編“A Practical Study About Entrepreneurship education Report on Research Project No.23

    Intensive supplementary feeding improves the performance of wild bird seed plots in provisioning farmland birds throughout the winter: a case study in lowland England

    Get PDF
    Capsule: Sown bird-food plots with intensive (daily) supplementary feeding throughout the winter attracted substantially greater numbers of seed-eating farmland birds than control plots without additional feeding, whose planted seed resource was exhausted by midwinter. Aims: We studied the performance of cultivated agri-environment scheme (AES) plots, predominantly growing winter bird seed (WBS), in addressing the ‘hungry gap’ of food scarcity for seed-eating farmland birds over the winter period. We assessed whether intensive supplementary feeding can improve AES-WBS plot performance to support greater numbers of birds over a longer period throughout the winter. Methods: Five monthly bird counts were conducted from November to March on AES-WBS plots on three farms during three winters, alongside assessment of standing seed availability on the plants. Daily supplementary feeding of 8-25 kg of mixed seeds was scattered directly onto each treatment plot, with additional seed provided in hanging birdfeeders. The density of target farmland birds, and the depletion of the standing seed resource on plants, was compared between treatment plots and controls over the winter, using generalised linear models. Results: Cultivated AES-WBS plots contained only c. 25% of their potential full capacity of seed availability at the beginning of winter, and this was exhausted by midwinter (January). Supplementary feeding attracted significantly greater numbers of farmland birds to AES-WBS plots than unfed controls, with up to 421 birds per plot, dominated by Common Chaffinches Fringilla coelebs, Yellowhammers Emberiza citronella and Common Linnets Linaria cannabina. Bird densities on fed plots peaked in the late winter (February) ‘hungry gap’, but the magnitude of peak densities varied between years and farms. Conclusion: Intensive supplementary feeding can substantially improve poor performance of AES-WBS plots in supporting farmland birds throughout the winter, particularly during the late winter ‘hungry gap’ when seed availability on AES-WBS plots is otherwise exhausted

    PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma

    Get PDF
    Background Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and whether PI3K pathway inhibition is a good therapeutic option in such cases. Methods We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class I PI3K inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K pathway. Results Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA mutation status. Cells with rare PIK3CA mutations and co-occurring TSC1 or PTEN mutations were less sensitive. Furthermore, downstream PI3K pathway alterations in TSC1 or PTEN or co-occurring AKT1 and RAS gene mutations were associated with GDC-0941 resistance. Conclusions Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable therapeutic target in advanced bladder cancer

    Coevolution in Action: Disruptive Selection on Egg Colour in an Avian Brood Parasite and Its Host

    Get PDF
    Trait polymorphism can evolve as a consequence of frequency-dependent selection. Coevolutionary interactions between hosts and parasites may lead to selection on both to evolve extreme phenotypes deviating from the norm, through disruptive selection.Here, we show through detailed field studies and experimental procedures that the ashy-throated parrotbill (Paradoxornis alphonsianus) and its avian brood parasite, the common cuckoo (Cuculus canorus), have both evolved egg polymorphism manifested in discrete immaculate white, pale blue, and blue egg phenotypes within a single population. In this host-parasite system the most common egg colours were white and blue, with no significant difference in parasitism rates between hosts laying eggs of either colour. Furthermore, selection on parasites for countering the evolution of host egg types appears to be strong, since ashy-throated parrotbills have evolved rejection abilities for even partially mimetic eggs.The parrotbill-cuckoo system constitutes a clear outcome of disruptive selection on both host and parasite egg phenotypes driven by coevolution, due to the cost of parasitism in the host and by host defences in the parasite. The present study is to our knowledge the first to report the influence of disruptive selection on evolution of discrete phenotypes in both parasite and host traits in an avian brood parasitism system

    S100A1: A Multifaceted Therapeutic Target in Cardiovascular Disease

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca2+ binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interact with both the sarcoplasmic reticulum ATPase (SERCA2a) and the ryanodine receptor 2 (RyR2), resulting in substantially improved Ca2+ handling and contractile performance. Additionally, S100A1 has been described to target the cardiac sarcomere and mitochondria, leading to reduced pre-contractile passive tension as well as enhanced oxidative energy generation. In endothelial cells, molecular analyses revealed a stimulatory effect of S100A1 on endothelial NO production by increasing endothelial nitric oxide synthase activity. Emphasizing the pathophysiological relevance of S100A1, myocardial infarction in S100A1 knockout mice resulted in accelerated transition towards heart failure and excessive mortality in comparison with wild-type controls. Mice lacking S100A1 furthermore displayed significantly elevated blood pressure values with abrogated responsiveness to bradykinin. On the other hand, numerous studies in small and large animal heart failure models showed that S100A1 overexpression results in reversed maladaptive myocardial remodeling, long-term rescue of contractile performance, and superior survival in response to myocardial infarction, indicating the potential of S100A1-based therapeutic interventions. In summary, elaborate basic and translational research established S100A1 as a multifaceted therapeutic target in cardiovascular disease, providing a promising novel therapeutic strategy to future cardiologists

    Selection in a Complex World: Deriving Causality from Stable Equilibrium

    Get PDF
    It is an ongoing controversy whether natural selection is a cause of population change, or a mere statistical description of how individual births and deaths accumulate. In this paper I restate the problem in terms of the reference class problem, and propose how the structure of stable equilibrium can provide a solution in continuity with biological practice. Insofar natural selection can be understood as a tendency towards equilibrium, key statisticalist criticisms are avoided. Further, in a modification of the Newtonian-force analogy, it can be suggested that a better metaphor for natural selection is that of an emergent force, similar in nature to entropic forces: with magnitude and direction, but lacking a spatiotemporal origin or point of application.status: publishe
    corecore