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Abstract
Hydraulic redistribution, redistribution of water upward or downward within a soil profile through roots as 

a consequence of root-soil water potential gradients, can be an important mechanism in transporting chemical 
signals (i.e. abscisic acid) to the shoot for stomatal closure or in maintaining the root system during dry periods 
of partial rootzone drying (PRD). PRD involves alternate irrigation to two sides of a plant root system. The 
study reported here investigated the occurrence and magnitude of hydraulic redistribution in glasshouse-grown 
potatoes (Solanum tuberosum L.) under PRD. Deuterium labelled water was applied to only one half of the root 
system to field capacity at tuber initiation. The roots from the drying side of the dual pot were extracted at 3, 6, 
12, 18 and 24 h following watering by the dry sieving method. Water from the roots was extracted by azeotropic 
distillation and analysed for hydrogen isotope ratios. Hydraulic redistribution occurred the most at night when 
stomatal conductance was considerably lower and leaf water potential was higher (less negative). The magnitude 
of the redistributed water, however, did not exceed 3.5%, indicating limited water redistribution under PRD. The 
observed water redistribution would probably be of little significance for the survival of roots present in the upper 
drier portion of the soil under higher water demanding conditions but its role in sending the chemical signals to 
the shoot to conserve water by reducing transpiration would be of particular significance during drying periods 
of partial rootzone drying.
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Introduction
Water is the most important factor controlling plant growth [1]. 

Plants shift growth in favour of roots under water deficit conditions [2]. 
Roots under water deficits continue growth by adjusting the minimum 
pressure in cells required for the expansion and by regulating solute 
transport within the elongation zone by altering cell wall elasticity 
or cell size [3,4]. This adoptive response to a water deficit results in 
vertical root penetration reaching the moist soil layers. Roots in the 
deeper moist soil layers often help plants to overcome drought stress 
by extracting and supplying more water to the shoot [5,6]. These 
roots can also redistribute water to the upper drier soil layers at night 
by a process known as hydraulic lift [7,8]. Although the direction 
of water movement is typically upward towards the shallower soil 
layers, it has been demonstrated that roots can also redistribute water 
from the surface to deep soil layers along water potential gradients 
[9,10]. The process is thought to be largely passive, requiring only a 
gradient in soil water potential, a more positive water potential in the 
root xylem than in the surrounding dry soil layers, and a relatively 
low resistance to reverse flow from the roots [11]. Because of the bi-
directional and passive nature of the phenomenon, Burgess et al. [9] 
have proposed ‘hydraulic redistribution’ as a more comprehensive 
term for the phenomenon. This downward movement of water has 
also been described as ‘downward siphoning’ [12], ‘inverse hydraulic 
lift’ [13] or ‘reverse flow’ [10] in the literature. Scholz et al. [14] found 
that the rate of reverse flow was linearly related to soil-leaf water 
potential gradient, with the greatest reverse flow rates occurring when 
this potential gradient was at its most negative values. Hultine et al. 
[15] reported greater magnitude of hydraulic redistribution in roots 
when night-time vapour pressure deficit was low. The onset and the 

magnitude of hydraulic redistribution is thought to be regulated by 
the development of water potential gradients within the plant parts, 
between the plant parts and soil, and the nocturnal demand for water 
by the plant [16]. Hydraulically redistributed water may buffer plants 
against water stress during a water deficit by replenishing up to 28–35% 
of the soil water removed each day by plants from the upper soil layers 
[17]. The redistributed water can contribute positively in transporting 
chemical signals (i.e. abscisic acid) to the shoot for stomatal closure 
[18] or in prolonging or enhancing the activity (e.g. growth and solute 
uptake) and life span of fine roots in a dry soil profile [19,20], Hydraulic 
redistribution has been reported to be a common phenomenon in 
numerous plant species including trees, shrubs and grasses from 
deserts to tropical forests [21]. Little attention has been paid, however, 
to the phenomenon in agricultural crops. There has been a report 
documenting the occurrence of hydraulic redistribution in grapevines 
under partial rootzone drying (PRD) [18]. PRD is an irrigation practice 
in which one half of the plant root system is irrigated as in standard 
irrigation whilst the other half is kept in a drying state [22]. Results of 
this study are, however, inconclusive in terms of the extent to which 
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hydraulic redistribution occurs to roots growing in the drying soil. Due 
to inadequate information on this subject, the degree of dependency of 
roots of the drying soil on roots of the wet soil under partial rootzone 
drying (PRD) is unknown. To date, there is no published work 
describing the detailed insight of the water-supplying characteristics 
of the wet roots to the roots of the drying soil under PRD. Further, 
until now hydraulic redistribution phenomenon has not been studied 
in potatoes (Solanum tuberosum L.) under partial rootzone drying. 
The present study investigated the hydraulic redistribution mechanism 
and its magnitude in potatoes (Solanum tuberosum L.) under partial 
rootzone drying using the stable isotope of hydrogen (deuterium). 
The hypothesis tested was that hydraulic redistribution does occur in 
potatoes during PRD and at an increased rate when transpiration is low. 
The objectives were to investigate (1) whether hydraulic redistribution 
occurs in potatoes during PRD, (2) the time of water movement from 
wet to the drying half of the root system, and (3) the magnitude of the 
redistributed water in the roots growing in the drying soil.

Materials and Methods
Potatoes (cv. Estima) with a split root system were grown in John 

Innes No. 2 compost in a dual flexible pot system under glasshouse 
conditions at Harper Adams University College, Shropshire, UK 
during April to June 2006. The dual flexible pot system was made by 
joining two flexible plant pots (LBS Polypot, LBS Horticultural Ltd., 
UK), each 18 cm wide and 30 cm tall with a volume of 6.11 L. Seed 
tubers of the potato cv. Estima were placed in a suitably-sized hole 
created on the inner sides of the pot, 10 cm from the top, in such a 
way that half of the sprouts laid in each side of the pot. A 2 cm layer 
of gravel (6 mm diameter) was added at the surface after planting 
to prevent evaporation. Plant emergence was completed at 13 ± 1 
days (n=40 ± standard deviation; S.D). All plants were thinned to a 
single shoot growing in the middle of the dual pot a week after plant 
emergence. The aim was to minimise root growth variability between 
the split root system and between the plants due to variable number of 
stems. Volumetric water content (%) of the compost from both sides 
of a dual pot was monitored regularly with time domain reflectometry 
using Trime FM (Imko, Germany). Both sides of a dual pot were 
irrigated close to field capacity until tuber initiation. At tuber initiation 
(four weeks after plant emergence), plants were randomly assigned to 
different treatments in a complete block experiment. Treatments were 
the combination of two water types and five root sampling times with 
four replications of each treatment. Water types were tap water and 
deuterated water. Tap water was the normal irrigation water with an 
isotopic composition (δ2H) of –51 parts per thousand (%). Deuterated 
water was prepared by mixing 10 ml of deuterium oxide (99.96% 
deuterium, Merck KGaA, Germany) in 40 litres of tap water. The δ2H 
value of the deuterated water obtained was 1217 (%). The obtained 
δ2H value was in the range of enrichment used for grapevines [18] 
and Douglas-fir trees [17]. Both types of water were applied in the 
morning between 08:00-09:00 h at a slow trickle, away from the stem 
base, to only one side of the dual pot to FC. The other side was kept in 
a drying state over the treatment period. Plants irrigated with tap water 
were denoted as ‘control’ plants whilst those irrigated with deuterated 
water were denoted as ‘treated’ plants. On average, control and treated 
plants received 1332 and 1353 ml of tap water and deuterated water, 
respectively. Shortly after watering, the irrigated side was covered 
with aluminium foil to prevent deuterium fractionation due to surface 
evaporation. The movement of water from the base of irrigated to 
the drying side of a dual pot was eliminated by placing each side of 
the dual pot in a pot saucer. Soil water content was close to 25% by 
vol. in both sides of a dual pot at the time of water application. This 

corresponded to approximately 50% of FC, or to a soil matric potential 
of approximately –150 kPa according to the moisture release curve for 
this compost. Roots from drying side of a dual pot were extracted at 3, 
6, 12, 18 and 24 h following watering. Root sampling times fell at local 
time 12:00, 15:00, 21:00, 03:00, and 09:00 h, respectively, allowing to 
determine the time and rate of water influx from irrigated to drying 
side of the root system under high (day) and low (night) evaporative 
demand conditions.

Physiological measurements

Physiological influences of PRD on the movement and magnitude 
of water redistribution were evaluated by measuring abaxial stomatal 
conductance and leaf water potential for each sampling time. Abaxial 
stomatal conductance was measured from the terminal leaflet of the 
4th fully expanded young leaf from the apex [23,24] using a portable 
porometer (Delta-T AP4, Delta–T devices, Cambridge, UK). Leaf water 
potential was measured immediately after the stomatal conductance 
measurements on the same leaf within a minute of its excision using 
a Scholander portable pressure chamber [25]. The physiological 
measurements were completed within half an hour at any sampling 
time.

Root extraction

Roots from the drying side of a dual pot were extracted from 
compost by the dry sieving method [26]. Roots retained on the sieve 
(5 × 5 mm mesh size) were collected, washed with tap water to remove 
any compost traces, excess water removed immediately with filter 
paper, placed in self-seal plastic bags and stored at 0°C in a water bath 
to prevent isotopic fractionation due to evaporation [6]. Root samples 
were transported to the laboratory after each sampling time where they 
were stored at -30°C until water extraction [6,27]. The root extraction 
time did not exceed one hour for any sampling time. Water extraction, 
purification and hydrogen isotope analysis Water from all root samples 
was extracted by azeotropic distillation with kerosene (liquid paraffin; 
boiling point >23°C, VWR Ltd. UK) as the solvent [28,29] using the 
methods described by Revesz and Woods [30]. The water extraction 
process took 2-3 h to complete. Water samples were purified with 
powder paraffin wax (solidifying point 63-66°C) for any impurities [30-
32]. The purified water samples were stored in 2 ml vials at –30°C [6,27]. 
All water samples were sent to Isotope and Luminescence Laboratory, 
School of Geography, Earth and Environmental Sciences, University of 
Birmingham, UK for hydrogen isotope analysis. Water samples were 
analysed for hydrogen isotope ratios on a continuous flow isotope ratio 
mass spectrometer (Isoprime™, GV Instruments, Manchester,UK) 
interfaced with an elemental analyser (Eurovector, GV Instruments) 
and a autosampler. The hydrogen isotope ratios were expressed as δ2H 
(delta values) in parts per thousand (%) relative to V-SMOW (Vienna 
Standard Mean Ocean Water):

δ2H (%)=[(Rsample/RVSMOW )-1]1000

Where Rsample and RVSMOW are the ratios of deuterium to hydrogen 
atoms (2H/1H) of the isotope sample and the standard VSMOW, 
respectively. The total analytical uncertainty of the instrument was ± 
1%.

Proportion of deuterated water uptake (%)

The proportion of deuterated water taken up by the treated plants 
relative to the control plants was calculated using the following formula 
(pers. communication: Prof. Ian Fairchild, School of Geography, Earth 
and Environmental Sciences, University of Birmingham, UK):
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Rtreated plant Rcontrol plantProportionof water uptake
Rdeuterated water Rtap water

−
=

−

Where Rtreated plant and Rcontrol plant are the ratios of deuterium to 
hydrogen atoms (2H/1H) of the water extracted from a plant that 
received either deuterated or tap water, respectively. Rdeuterated water 
and Rtap water are the ratios of deuterium to hydrogen atoms (2H/1H) 
of deuterated and tap water applied to a plant, respectively. These 
proportions were expressed as percentages after multiplying by 100.

Water utilisation

Water utilisation from either side of a dual pot was calculated by 
the following

Formula:

Water use (%, vol.) of a side of a dual pot was calculated as follows

Water use (%, vol.)=WC(s)-WC(E)

Where:

WC(S) is the water content (%, vol.) measured from a side of a dual 
pot when treatments began. WC(s) (%, vol.) for the wet side of the pot 
was taken as 50.33% as this side was only irrigated to field capacity. 
WC(E) is the water content (%, vol.) measured at the end of a sampling 
time.

Air temperature

Air temperature during the treatment period was recorded by 
positioning a Tinytag® data logger (Gemini Data Loggers (UK) Ltd., 
Chichester, Sussex, UK) one metre above the plant canopy. The changes 
in temperature over each sampling time are shown in Figure 1.

Statistical data and analysis

During water application, approximately 500 ml of deuterated 
water (δ2H=1217%) accidentally moved to the dry side of the pot 
(supposed not to receive this water) in one of the 3 h root sampling 
time plants, thus omitted from the experiment. Additionally, one water 
sample bottle of 12 h root sampling time damaged during storage, so 
was discarded in the isotope analysis. Data were subjected to polynomial 
analysis of variance with water types and sampling times as factors 
for all measured variables except for percent deuterated water in the 
drying roots water and soil water content measured at the end of each 
sampling time. Percent deuterated water in the drying roots water was 
analysed with sampling times as the main factor. Soil water content data 
was analysed by considering pot sides another factor with water types 
and sampling times. Data were analysed using Genstat 8th edition (PC/
Windows XP), Lawes Agricultural Trust (Rothamsted Experimental 
Station). Treatments means were considered significantly different at 
the 5% level of probability using Tukey’s HSD test.

Results
Water content (%, vol.)

The volumetric water content measured at the end of each sampling 
time was not significantly different between control and treated plants 
(P=0.907) (Table 1a) but differed significantly between the wet and 
the dry side of the pot (P<0.001) (Table 1b). The polynomial analysis 
of variance revealed a significant decrease in the water content over 
time (P=0.004), with a quadratic effect (P=0.002). The non-linear 
relationship was mainly due to high soil water content in one of the 
control plants harvested after 24 h of water application.

Of the possible interactions, pot side x sampling time interaction 
significantly affected the water content of the pots (P=0.005), with 
a linear effect (P<0.001) (Table 1b). Tukey’s test revealed that water 
content on the wet side was significantly higher from the drying side 
of the pot for all sampling times. Although water content of the drying 
side of the pot was not significantly different between sampling times, 
the water content of 3 h sampling time was significantly higher from 
the water content of 12, 18 and 24 h sampling times on the wet side of 
the dual pot.

Water utilisation from drying side of the pot (%)

The percent of water utilisation from drying side of the pot was not 
significantly different between control and treated plants (P=0.563), 
between sampling times (P=0.354), and between control and treated 
plants over the treatment period (P=0.942) (Table 2).

Stomatal conductance

Stomatal conductance was not significantly different between 
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Figure 1: Changes in temperature over the treatment period (2-3 June 
2006) following deuterated water application to potatoes (cv. Estima) 
under glasshouse conditions. Arrows and numbers indicate air temperature 
experienced by the potato plants during each sampling time (h). Experiment 
was started at 09:00 am local time.

Water type
Sampling time after watering (h)

Mean3 6 12 18 24
Tap water (control plants) 31.31 30.71 27.98 28.58 30.16 29.75

Deuterated water (treated 
plants) 32.13 30.04 28.53 29.24 29.15 29.82

Mean 31.72 30.38 28.25 28.91 29.65

a) Water type × sampling time interaction.

Pot side
Sampling time after watering (h)

Mean
3 6 12 18 24

Wet 40.08 37.55 34.29 34.54 34.73 36.24
Dry 23.36 23.20 22.21 23.28 24.59 23.33

b) Pot side × sampling time interaction.

Water Type Pot side
Sampling time after watering (h)

Mean
3 6 12 18 24

Tap water
(control pants)

Wet 39.88 37.98 34.58 23.05 34.93 36.07
Dry 22.75 23.45 21.38 24.18 25.40 23.43

Deuterated water
(treated plants)

Wet 40.28 37.13 34.00 36.10 34.53 36.41
Dry 23.98 22.95 23.05 22.38 23.78 23.23

C) Water type × pot side × sampling time interaction.

http://dx.doi.org/10.4172/2329-8863.1000162


Citation: Saeed H, Grove IG, Kettlewell PS, Hall NW, Fairchild IJ, et al. (2015) Hydraulic Redistribution from Wet to Drying Roots of Potatoes 
(Solanum tubersosum L.) During Partial Rootzone Drying. Adv Crop Sci Tech 3: 162. doi:10.4172/2329-8863.1000162

Page 4 of 8

Volume 3 • Issue 1 • 1000162
Adv Crop Sci Tech
ISSN: 2329-8863 ACST, an open access journal

control and treated plants (P=0.802) (Table 3) but differed significantly 
over the treatment period (P<0.001) (Figure 2) with a linear and 
quadratic relationship; both with P<0.001. Although the deviation 
remained significant (P<0.001), the quadratic relationship described 
the stomatal conductance response better as it reflected the biological 
response of plants with the time of the day. Stomatal conductance 
measured during daytime at 12:00 h after 3 h of water application 
was significantly higher from all other sampling times. The lowest 
stomatal conductance (23.2 mmolm–2 s–1) was, however, measured 
in plants harvested after 18 h of water application at dawn. There was 
no significant water type x sampling time interaction effect on stomatal 
conductance (P=0.226) (Table 3).

Leaf water potential

There were no significant differences between control and treated 
plants for leaf water potential (P=0.910) (Table 4). Leaf water potential, 
however, differed significantly between the sampling times (P<0.001), 
with a cubic effect (P<0.001) (Figure 3). Sampling times 3h and 6h 
were statistically similar to each other for leaf water potential but were 
significantly different from rest of the sampling times. The higher 
(less negative) leaf water potential of –222.7 kPa measured in plants 
harvested at dawn after 18 h of water application was only found to 
be non-significant with leaf water potential of the plants harvested in 
the morning at 09:00 am after 24 h of water application. Water type x 
sampling time interaction effect was found to be non- significant on 
leaf water potential of the plants (P=0.344) (Table 4).

Isotopic composition (δ2H,%) of water of ‘drying roots’

The rate and pattern of water redistribution cannot be described 
from variations in the δ2H values between the sampling times as mean 
δ2H value of each sampling time is an average of control and treated 
plants δ2H values. The δ2H values of control plants (received tap water) 
predominantly reflect natural changes in isotope ratios of root water 
over time and cannot be used to describe the water redistribution 

pattern over the treatment period, only δ2H values of the treated plants 
appear to be more applicable and reliable in describing such trends. 
Changes in δ2H values of the water extracted from ‘drying roots’ of 
control and treated plants are, therefore, described separately over the 
treatment period.

The isotopic composition (δ2H, %) of water extracted from ‘drying 
roots’ was significantly different between control and treated plants 
(P<0.001) (Table 5), water of the treated plants being 34.9% isotopically 
heavier relative to the control plants. The effect of water type x sampling 
time interaction on δ2H values of water extracted from ‘drying roots’ 
was found close to the level of significance (P=0.052) with a quadratic 
relationship (P=0.015) (Figure 4). The deuterium concentration-time 
curves for control and treated plants show that deuterated water moved 
to the drying half of the root system after 3 h of water application, 
indicated by relatively higher ‘drying roots’ water δ2H values of the 
treated plants than the control plants (Figure 4).

The deuterium concentration, however, reached a peak after 12 
h of water application, which remained relatively constant until 18 

Factor P value sed (df=55)
Water type 0.907 0.576
Pot side <0.001 0.576
Sampling time 0.004

0.910

Linear 0.015
Quadratic 0.002
Deviations 0.645
Water type × pot side 0.638 0.814
Water type × sampling time 0.785

1.288

Water type. linear water 0.600
type. quadratic 0.599

Deviations 0.561

Pot side × sampling time 0.005

1.288

Pot side linear <0.001

Pot side quadratic 0.277

Deviations 0.842

Water type × pot side × sampling time 0.349

1.821

Water type × pot sides Linear 0.244

Water type × pot sides Quadratic 0.900
Deviations 0.217
CV 8.6%

Table 1: Volumetric water content (%) of dual pots measured at the end of each 
sampling time along with all possible interactions of glasshouse grown potatoes of 
the cv. Estima.

Water type Sampling time after watering (h) Mean
3 6 12 18 24

Tap water
(control pants) 18.3 17.3 15.9 14.9 15.2 16.3

Deuterated water
(treated plants) 18.8 17.2 15.4 16.3 17.1 16.9

Mean 18.5 17.3 15.7 15.6 16.1

Factor P value sed (df=26)
Water type 0.563 1.048

Sampling time 0.354

1.657

Linear 0.110

Quadratic 0.186
Deviations 0.984

Water type × sampling time 0.942

2.343

Water type. Linear 0.524

Water type. Quadratic 0.679
Deviations 0.921

CV 19.9%

Table 2: Water utilisation (%) by glasshouse-grown potatoes (cv. Estima) from 
drying side of the pot over treatment period.

Water Type Sampling time after watering (h) Mean
3 6 12  18 24

Tap water (control 
pants) 158.8 86.5 93.2 25.0 61.5 85.0

Deuterated water 
(treated plants) 199.2  87.0  58.2  21.5  71.5 87.5

Factor P value sed (df=26)
Water type 0.802 9.86
Sampling time <0.001

15.58
Linear <0.001
Quadratic <0.001
Cubic 0.592
Water type × sampling time 0.226

22.04

Water type. Linear 0.473
Water type. Quadratic 0.045
Water types. Cubic 0.339
Deviations 0.707
CV 36.1 %

Table 3: Stomatal conductance (mmolm–2s–1) over treatment period of potato plants 
(cv. Estima) received tap water and deuterated water under glasshouse conditions.
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h and then showed a declining trend, with the lowest δ2H value of 
–33.4% in plants harvested after 24 h of water application. The ‘drying 
roots’water δ2H values of the control plants were not significantly 
between the sampling times and varied from –53.3 to –63.7% (Figure 
4), with a mean of –57.6% (Table 5). Root water of the control plants 
was 6.6% isotopically lighter than the source irrigation water δ2H value 
of –51%, indicating the liberation of organically bound hydrogen into 
the bulk root water due to the breakdown of either plant tissues or sap 
carbohydrates to some extent at high distillation temperature [33].

Percent deuterated water in the ‘drying roots’ water

The proportion of deuterated water in the water extracted from 
‘drying roots’ of the treated plants was significantly different over the 
time course of the study (P=0.046) (Figure 5). Figure 5 shows a steady 
increase in the redistribution of deuterated water from the roots in the 
wet soil to the roots in the drying soil from 6 to 18 h of water application, 
with the highest deuterium concentration of 3.48% in plants harvested 

after 18 h of water application at dawn. The percent deuterated water, 
however, declined to 1.57% in plants harvested in the morning at 
09:00 am after 24 h of water application. The small proportion of the 
deuterated water in ‘drying roots’ of the treated plants indicates that 
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Figure 3: Diurnal changes in leaf water potential (kPa) following deuterated 
water application to glasshouse grown potatoes (cv Estima) at 09:00 am local 
time.
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Figure 4: Time course changes in δ2H (%) values of water extracted from 
‘drying roots’ of control and treated potato plants (cv. Estima) grown under 
glasshouse conditions. Experiment was started at 09:00 am local time.

Water type Sampling time after watering (h) Mean
3 6 12 18 24

Tap water
(control pants) –429.1 –483.3 –380.4 –218.5 –291.9 –360.7

Deuterated water
(treated plants) –492.8 –475.8 –350.1 –226.9 –266.6 –362.4

Factor P value sed (df = 26)
Water type 0.910 15.59

Sampling time <0.001

24.65

Linear Quadratic 0.008

Cubic <0.001

Deviations 0.925
Water type × sampling time 0.344

34.87

Water type. Linear 0.201

Water type. Quadratic 0.365

Water type. Cubic 0.156

Deviations 0.967
CV 13.6%

Table 4: Leaf water potential (kPa) measured over time following deuterated water 
application to glasshouse grown potatoes of the cv. Estima.

Water type Δ2H (%)

Tap water (control plants) –57.6

Deuterated water (treated plants) –22.7

Factor P value sed (df = 26)

 Water type <0.001 2.66

 Sampling time 0.653

4.21
 Linear 0.275

 Quadratic 0.350

 Deviations 0.852

 Water type × sampling time 0.052

5.96

 Water type. Linear 0.302

 Water type. Quadratic 0.015

 Deviations 0.248

 CV 21.0%

Table 5: Mean δ2H values (%) of water extracted from ‘drying roots’ of the control 
(received tap water) and the treated (received deuterium-enriched water) plants of 
potato cv. Estima.
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the ‘drying roots’ were less dependent on the water of the wet soil but 
were largely relying on the water existing in the drying soil (Figure 5).

Discussion
Irrespective of the sampling time, δ2H values of the ‘drying 

roots’ of the treated plants remained negative relative to the standard 
(VSMOW). There could be several reasons. Firstly, the negative δ2H 
values might be associated with the root sample size. Whole root 
system growing in the drying soil was used to extract water for isotope 
analysis. Although the whole root system was used to reduce bias in the 
results, the existing water in the roots, absorbed from the soil previously 
watered with tap water (δ2H=–51%), might have diluted the deuterium 
concentration of the redistributed water. Secondly, there is a possibility 
that the quantity of water absorbed by roots from the irrigated side 
of the pot was perhaps sufficient to hydrate the above-ground plant 
parts but not sufficient enough to hydrate all roots in the drying soil 
given the relatively short time period over which the samplings were 
taken. Thirdly, the liberation of hydrogen (H) from breaking down 
of plant tissues or sap carbohydrates at high temperature of the 
azeotropic distillation technique might have modified the δ2H values 
of water [31]. Finally, deuterium might have been retained in the 
tissue matrix, or mixed and exchanged with hydrogen atoms of cell 
tissues in different compartments of the above-ground plant parts [34], 
which could have resulted in either loss of deuterium or slowed down 
the deuterium content reaching the roots growing in the drying soil, 
thereby reducing deuterium concentration. Schiegl and Vogel [35] also 
reported depletion in the D/H ratio (δ2H) of several percent during 
the conversion of water to organic matter in living plants. The results, 
therefore, need to be read cautiously.

The results indicate that water moved from roots in the wet soil 
to roots in the drying soil as the root water of the treated plants was 
isotopically heavier relative to the control plants. Although there was an 
indication of water redistribution, the magnitude of this redistribution, 
however, was less distinct between sampling times. Surprisingly, the 
treated plants harvested after 3h and 6h of water application at 12:00 
and 15:00 h had higher δ2H values of the ‘drying roots’ water relative to 
the control plants, showing water movement of 2.63% and 2.50% from 
wet soil roots to ‘drying roots’. Physiologically, plants of these sampling 
times had higher stomatal conductance and lower leaf water potential 
(more negative) (Figures 2 and 3), indicating high evaporative demands 

of the plants relative to other sampling times. Under high evaporative 
demands, water evaporation in the stomatal chamber develops a highly 
negative pressure (i.e. tensions up to –1000 kPa) in the xylem vessels, 
which draws water from the roots up into the aerial parts [36] and 
is distributed to the cells that are losing water, predominantly by the 
apoplastic pathway [37].

During this unidirectional water movement, the reasons for this 
higher δ2H values in the ‘drying roots’ are not clear. Since the wet and 
the drying roots had originated from the same stem base, there is a 
possibility that deuterated water entering the stem might have moved 
across (or around) the stem laterally from the root-stem interface 
[20] and then transported downwards into ‘drying roots’, contrary 
to the direction of the transpiration stream. Brooks et al. [17] studied 
hydraulic redistribution of woody perennials and pointed out that the 
traverse flow across (around) the trunk and then reversal into roots 
and soils on the non-irrigated side was possible provided resistances 
to hydraulic conductance across the tissues of the trunk were greater 
that roots. Lateral movement of deuterated water between the sides 
of the pot at the time of application could be the other possibility but 
this potential source of error was eliminated by applying water away 
from the stem base at a slow trickle. This method of water application 
effectively restricted water movement within the wet soil column of the 
pot as there were no visible signs of lateral water movement between 
the pot sides.

Several researchers have successfully demonstrated that hydraulic 
redistribution usually occurs at night when transpiration diminished 
sufficiently to allow water potential of the roots to exceed that of the 
other plant parts or the drier portions of the soil profile [7,17,29,38-
40]. In this study, the plants harvested after 18 h of water application at 
dawn (03:00 am) had the lowest stomatal conductance and highest leaf 
water potential (less negative) but the amount of water redistributed 
to the drying roots was only 3.48% (Figure 5). This suggests that the 
hydraulic resistances encountered by water being redistributed from 
roots in the wet soil to roots in the drying soil through shoots were 
probably high [29], thereby resulting in reduced water transport 
into the ‘drying roots’. It is also postulated that reduced stomatal 
conductance and higher leaf water potential (less negative) coupled 
with warmer and drier conditions at night (increased vapour pressure 
deficit) were perhaps still high enough to sustain a water potential 
gradient between the soil and roots to extract water to refill the above-
ground plant storage compartments [29]. The above-ground plant parts 
refilling demand may have indirectly limited or reduced the magnitude 
of hydraulic redistribution by creating strong sinks for water within 
the transpiring foliage than existed in the roots growing in the drying 
soil. Other possible explanation could be that hydraulic lift was also 
occurring simultaneously. Thus, the ‘drying roots’ were probably 
being rehydrated both from above-ground plant parts due to hydraulic 
redistribution and from deeper moist soil layers due to hydraulic lift, 
thereby neutralising the deuterium concentration to some extent. 
Hultine et al. [41] found that the magnitude of hydraulic redistribution 
was greater in roots when night-time vapour pressure deficit was low.

The isotopic composition of the root water declined after 24 h of 
water application, which corresponded to daytime 09:00 am in the 
morning. The reasons for this decline are not clear. It is likely that 
the ‘drying roots’ were also supplying water to the shoot to meet the 
plant transpirational demand on a bright and hot morning with an air 
temperature above 20°C (Figure 1). This is supported by the increased 
stomatal conductance and a lower leaf water potential (more negative) 
of this sampling time relative to the 18 h sampling time (Figures 2 
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Figure 5: Estimated percentages of deuterated water in the water extracted 
from ‘drying roots’ of treated potato plants (cv. Estima) under glasshouse 
conditions. Experiment was started at 09:00 am local time. P=0.046; 
sed=0.584; CV (%)=30.3.
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and 3). As a result of this, the deuterium concentration (δ2H) of over 
nightly redistributed water might have been diluted by water absorbed 
from the drying soil or a portion of the redistributed water might have 
been supplied to the shoot before sampling (Table 2), thereby showing 
a decline in water redistribution from 3.48% to 1.57% relative to the 18 
h sampling time. Alternatively, the decline in deuterium concentration 
could partly be due to inherent uncertainties associated with the 
sampling, distillation or analytical technique. Soil water content was 
measured at the end of each sampling time from both sides of the dual 
pot to quantify its effect on hydraulic redistribution. On average, the 
soil water content remained above 36% on the irrigated side and above 
23% on the dry side of the pot (Table 1b). Theoretically, substantial 
water redistribution should have occurred due to the unequal soil water 
content between the wet and the dry part of the root system but this was 
not observed even during periods of low transpiration (i.e. night-time) 
(Figure 2). The magnitude of the hydraulically redistributed water was 
perhaps largely dependent on the hydraulic resistances encountered by 
water during the cell-to-cell pathway [42]. 

The water utilisation pattern indicated that the plants predominantly 
utilised water from the irrigated side of the dual, as expected. Despite 
the wet side being the dominant source of water use, the small changes 
in δ2H values of the ‘drying roots’ water between the sampling times 
suggest less dependency of the ‘drying roots’ on the wet side of the root 
system. Further, water supplying ability of the ‘drying roots’ to the shoot 
(Table 2) may have deterred water redistribution substantially or water 
absorbed by these roots from the soil may have altered the isotope ratio 
(δ2H) of root water upon mixing with the redistributed water. Based 
on the results, we suggest the occurrence of hydraulic redistribution in 
potatoes during partial root zone drying at a limited rate. The limited 
water redistribution would probably be of little significance in the 
survival of roots present in the upper drier portion of the soil under 
higher water demanding conditions but its role in sending the chemical 
signals to the shoot to conserve water by reducing transpiration would 
be of particular significance during drying periods of partial rootzone 
drying. It is planned to study this mechanism over days by observing 
the movement of deuterium from wet roots to stems, leaves and then to 
the roots growing in the drying soil column for better understanding of 
the hydraulic redistribution mechanism under partial rootzone drying.
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