6,674 research outputs found

    Influence parameters of impact grinding mills

    Get PDF
    Significant parameters for impact grinding mills were investigated. Final particle size was used to evaluate grinding results. Adjustment of the parameters toward increased charge load results in improved efficiency; however, it was not possible to define a single, unified set to optimum grinding conditions

    The globular cluster system of NGC 1316 IV. Nature of the star cluster complex SH2

    Full text link
    The light of the merger remnant NGC 1316 is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the HII region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. We used the Integrated Field Unit of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. The line ratios of different spectra vary, indicating highly structured HII regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field population.Comment: 10 pages, 5 figures, accepted for Astronomy & Astrophysic

    Integral field spectroscopy of nearby QSOs II. The molecular gas content and condition for star formation

    Get PDF
    We present single-dish 12CO(1 − 0) and 12CO(2 − 1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. 12CO(1 − 0) is detected in 8 of 14 targets and 12CO(2 − 1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times well matching normal star forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in 12CO(1 − 0) which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs however imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for the nuclear activity and is well represented by a scaling relation between the total and circum-nuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blow out of the gas envelope through outflows, or a different ISM phase composition

    The MUSE view of QSO PG 1307+085: an elliptical galaxy on the \u3cem\u3eM\u3c/em\u3e\u3csub\u3eBH–σ*\u3c/sub\u3e relation interacting with its group environment

    Get PDF
    We report deep optical integral-field spectroscopy with the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope of the luminous radio-quiet quasi-stellar object (QSO) PG 1307+085 obtained during commissioning. Given the high sensitivity and spatial resolution delivered by MUSE, we are able to resolve the compact (re ∌ 1.3 arcsec) elliptical host galaxy. After spectroscopic deblending of the QSO and host galaxy emission, we infer a stellar velocity dispersion of σ* = 155 ± 19 km s−1. This places PG 1307+085 on the local MBH–σ* relation within its intrinsic scatter but offset towards a higher black hole mass with respect to the mean relation. The MUSE observations reveal a large extended narrow-line region (ENLR) around PG 1307+085 reaching out to ∌30 kpc. In addition, we detect a faint ionized gas bridge towards the most massive galaxy of the galaxy group at 50 kpc distance. The ionized gas kinematics does not show any evidence for gas outflows on kpc scales despite the high QSO luminosity of Lbol \u3e 1046 erg s−1. Based on the ionized gas distribution, kinematics and metallicity we discuss the origin of the ENLR with respect to its group environments including minor mergers, ram-pressure stripping or gas accretion as the likely scenarios. We conclude that PG 1307+085 is a normal elliptical host in terms of the scaling relations, but that the gas is likely affected by the environment through gravity or ambient pressure. It is possible that the interaction with the environment, seen in the ionized gas, might be responsible for driving sufficient gas to the black hole

    Exact flow equation for bound states

    Full text link
    We develop a formalism to describe the formation of bound states in quantum field theory using an exact renormalization group flow equation. As a concrete example we investigate a nonrelativistic field theory with instantaneous interaction where the flow equations can be solved exactly. However, the formalism is more general and can be applied to relativistic field theories, as well. We also discuss expansion schemes that can be used to find approximate solutions of the flow equations including the essential momentum dependence.Comment: 22 pages, references added, published versio

    From Teamchef Arminius to Hermann Junior: glocalised discourse about a national foundation myth

    Get PDF
    If for much of the nineteenth and twentieth centuries, the ‘Battle of the Teutoburg Forest’, fought in 9 CE between Roman armies and Germanic tribes, was predominantly a reference point for nationalist and chauvinist discourses in Germany, the first decade of the twenty-first century has seen attempts to link public remembrance with local/regional identities on the one hand and international/intercultural contact on the other. In the run up to and during the ‘anniversary year’ of 2009, German media, sports institutions and various other official institutions articulating tourist, economic and political interests attempted to create a new ‘glocalised’ version of the public memory of the Teutoburg battle. Combining methods of Cognitive Linguistics and Critical Discourse Analysis, the paper analyses the narrative and argumentative topoi employed in this re-orientation of public memory, with a special emphasis on hybrid, post-national identity-construction. Das zweitausendjĂ€hrige Gedenkjahr der „Schlacht im Teutoburger Wald“ im Jahr 2009 bot eine gĂŒnstige Gelegenheit, die bis in die zweite HĂ€lfte des 20. Jahrhunderts dominante Tradition nationalistisch–chauvinistischer Deutungen des Sieges von germanischen StĂ€mmen ĂŒber drei römische Legionen zu korrigieren und zu ĂŒberwinden. Der Aufsatz analysiert mit Hilfe diskurslinguistischer Methoden die Anstrengungen regionaler Institutionen und Medien, die nationale Vereinnahmung des historischen Gedenkens kritisch zu thematisieren sowie neue, zum eine lokal situierte, zum andern international orientierte Identifikationsangebote anzubieten. Die Analyse zeigt, dass solche „de-nationalisierten“ Identifikationsangebote zwar teilweise auch frĂŒher verwendet wurden, aber heutzutage rekontextualisiert und auf innovative Weise in den Vordergrund gestellt werden

    Beam test results of silicon sensor module prototypes for the Phase-2 Upgrade of the CMS Outer Tracker

    Get PDF
    The start of the High-Luminosity LHC (HL-LHC) in 2027 requires upgrades to the Compact Muon Solenoid (CMS) Experiment. In the scope of the upgrade program the complete silicon tracking detector will be replaced. The new CMS Tracker will be equipped with silicon pixel detectors in the inner layers closest to the interaction point and silicon strip detectors in the outer layers. The new CMS Outer Tracker will consist of two different kinds of detector modules called PS and 2S modules. Each module will be made of two parallel silicon sensors (a macro-pixel sensor and a strip sensor for the PS modules and two strip sensors for the 2S modules). Combining the hit information of both sensor layers it is possible to estimate the transverse momentum of particles in the magnetic field of 3.8 T at the full bunch-crossing rate of 40 MHz directly on the module. This information will be used as an input for the first trigger stage of CMS. It is necessary to validate the Outer Tracker module functionality before installing the modules in the CMS experiment. Besides laboratory-based tests several 2S module prototypes have been studied at test beam facilities at CERN, DESY and FNAL. This article concentrates on the beam tests at DESY during which the functionality of the module concept was investigated using the full final readout chain for the first time. Additionally the performance of a 2S module assembled with irradiated sensors was studied. By choosing an irradiation fluence expected for 2S modules at the end of HL-LHC operation, it was possible to investigate the particle detection efficiency and study the trigger capabilities of the module at the beginning and end of runtime of the CMS experiment.The start of the High-Luminosity LHC (HL-LHC) in 2027 requires upgrades to the Compact Muon Solenoid (CMS) experiment. In the scope of the upgrade program the complete silicon tracking detector will be replaced. The new CMS Tracker will be equipped with silicon pixel detectors in the inner layers closest to the interaction point and silicon strip detectors in the outer layers. The new CMS Outer Tracker will consist of two different kinds of detector modules called PS and 2S modules. Each module will be made of two parallel silicon sensors (a macro-pixel sensor and a strip sensor for the PS modules and two strip sensors for the 2S modules). Combining the hit information of both sensor layers, it is possible to estimate the transverse momentum of particles in the magnetic field of 3.8 T at the full bunch-crossing rate of 40 MHz directly on the module. This information will be used as an input for the first trigger stage of CMS. It is necessary to validate the Outer Tracker module functionality before installing the modules in the CMS experiment. Besides laboratory-based tests several 2S module prototypes have been studied at test beam facilities at CERN, DESY and FNAL. This article concentrates on the beam tests at DESY during which the functionality of the module concept was investigated using the full final readout chain for the first time. Additionally the performance of a 2S module assembled with irradiated sensors was studied. By choosing an irradiation fluence expected for 2S modules at the end of HL-LHC operation, it was possible to investigate the particle detection efficiency and study the trigger capabilities of the module at the beginning and end of the runtime of the CMS experiment

    Aperture effects on the oxygen abundance determinations from CALIFA data

    Full text link
    This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]6583/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.Comment: Accepted for publication in Ap

    Old and new major mergers in the SOSIMPLE galaxy, NGC 7135

    Get PDF
    The simultaneous advancement of high resolution integral field unit spectroscopy and robust full-spectral fitting codes now make it possible to examine spatially resolved kinematic, chemical composition, and star-formation history from nearby galaxies. We take new MUSE data from the snapshot optical spectroscopic imaging of mergers and pairs for legacy Exploration (SOSIMPLE) survey to examine NGC 7135. With counter-rotation of gas, disrupted kinematics and asymmetric chemical distribution, NGC 7135 is consistent with an ongoing merger. Though well hidden by the current merger, we are able to distinguish stars originating from an older merger, occurring 6–10 Gyr ago. We further find a gradient in ex-situ material with galactocentric radius, with the accreted fraction rising from 0 per cent in the galaxy centre, to ∌7 per cent within 0.6 effective radii

    The observability of galaxy merger signatures in nearby gas-rich spirals

    Full text link
    Galaxy mergers are crucial to understanding galaxy evolution, therefore we must determine their observational signatures to select them from large IFU galaxy samples such as MUSE and SAMI. We employ 24 high-resolution idealized hydrodynamical galaxy merger simulations based on the ‘Feedback In Realistic Environment’ (FIRE-2) model to determine the observability of mergers to various configurations and stages using synthetic images and velocity maps. Our mergers cover a range of orbital configurations at fixed 1:2.5 stellar mass ratio for two gas rich spirals at low redshift. Morphological and kinematic asymmetries are computed for synthetic images and velocity maps spanning each interaction. We divide the interaction sequence into three: (1) the pair phase; (2) the merging phase; and (3) the post-coalescence phase. We correctly identify mergers between first pericentre passage and 500 Myr after coalescence using kinematic asymmetry with 66 per cent completeness, depending upon merger phase and the field of view of the observation. We detect fewer mergers in the pair phase (40 per cent) and many more in the merging and post-coalescence phases (97 per cent). We find that merger detectability decreases with field of view, except in retrograde mergers, where centrally concentrated asymmetric kinematic features enhances their detectability. Using a cut-off derived from a combination of photometric and kinematic asymmetry, we increase these detections to 89 per cent overall, 79 per cent in pairs, and close to 100 per cent in the merging and post-coalescent phases. By using this combined asymmetry cut-off we mitigate some of the effects caused by smaller fields of view subtended by massively multiplexed integral field spectroscopy programmes
    • 

    corecore