232 research outputs found

    Modern nucleon-nucleon interactions and charge-symmetry breaking in nuclei

    Full text link
    Coulomb displacement energies, i.e., the differences between the energies of corresponding nuclear states in mirror nuclei, are evaluated using recent models for the nucleon-nucleon (NN) interaction. These modern NN potentials account for breaking of isospin symmetry and reproduce pppp and pnpn phase shifts accurately. The predictions by these new potentials for the binding of 16O^{16}O are calculated. A particular focus of our study are effects due to nuclear correlations and charge-symmetry breaking (CSB). We find that the CSB terms in the modern NN interactions substantially reduce the discrepancy between theory and experiment for the Coulomb displacement energies; however, our calculations do not completely explain the Nolen-Schiffer anomaly. Potential sources for the remaining discrepancies are discussed.Comment: 10 pages RevTeX, no figure

    Sulfatide activator protein : alternative splicing that generates three mRNAs and a newly found mutation responsible for a clinical disease

    Get PDF
    The sulfatide activator protein, also known as SAP-1, is derived from a gene that generates an mRNA coding for four homologous proteins. Its physiological function is to stimulate hydrolysis of sulfatide by arylsulfatase A in vivo. A genetic defect in the sulfatide activator results in a metabolic disorder similar to classical metachromatic leukodystrophy, which is itself caused by a genetic defect in arylsulfatase A. In a patient with sulfatide activator deficiency, a nucleotide transversion G722----C (counted from A of the initiation codon ATG) was found in the mRNA of the sulfatide activator precursor, resulting in the substitution of serine for Cys241 in the mature sulfatide activator. The remainder of the coding sequence was completely normal except for a polymorphism C to T in position 1389, which does not change the amino acid sequence. The patient produces at least three different forms of mRNA for the precursor. Two of them include a stretch of an additional 9 and 6 bases, respectively, within the sulfatide activator coding region. In normal individuals this stretch of additional bases has also been observed. This could be explained by the presence of a small 9-base pair exon which can be introduced, or not, by alternative splicing as a stretch of 9 or 6 bases into the mature mRNA. The shortest form of the mRNA yields an active sulfatide activator (Fürst, W., Schubert, J., Machleidt, W., Meier, H. E., and Sandhoff, K. (1990) Eur. J. Biochem. 192, 709-714)

    Influence of short-term dietary measures on dioxin concentrations in human milk.

    Get PDF
    Breast-feeding may expose infants to high levels of toxic chlorinated dioxins. To diminish intake of these lipophilic compounds by the baby, two diets were tested for their ability to reduce concentrations of dioxins in human milk. The diets were a low-fat/high- carbohydrate/low-dioxin diet. (about 20% of energy intake derived from fat) and a high fat /low-carbohydrate/low-dioxin diet. These diets were tested in 16 and 18 breast-feeding women, respectively. The test diets were followed for 5 consecutive days in the fourth week after delivery. Milk was sampled before and at the end of the dietary regimen, and dioxin concentrations and fatty acid concentrations were determined. Despite significant influences of these diets on the fatty acid profiles, no significant influence on the dioxin concentrations in breast milk could be found. We conclude that short-term dietary measures will not reduce dioxin concentration in human milk

    Absence of stable collinear configurations in Ni(001)ultrathin films: canted domain structure as ground state

    Full text link
    Brillouin light scattering (BLS) measurements were performed for (17-120) Angstrom thick Cu/Ni/Cu/Si(001) films. A monotonic dependence of the frequency of the uniform mode on an in-plane magnetic field H was observed both on increasing and on decreasing H in the range (2-14) kOe, suggesting the absence of a metastable collinear perpendicular ground state. Further investigation by magneto-optical vector magnetometry (MOKE-VM) in an unconventional canted-field geometry provided evidence for a domain structure where the magnetization is canted with respect to the perpendicular to the film. Spin wave calculations confirm the absence of stable collinear configurations.Comment: 6 pages, 3 figures (text, appendix and 1 figure added

    Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films

    Full text link
    The influence of uncorrelated (nonmagnetic) overlayers on the magnetic properties of thin itinerant-electron films is investigated within the single-band Hubbard model. The Coulomb correlation between the electrons in the ferromagnetic layers is treated by using the spectral density approach (SDA). It is found that the presence of nonmagnetic layers has a strong effect on the magnetic properties of thin films. The Curie temperatures of very thin films are modified by the uncorrelated overlayers. The quasiparticle density of states is used to analyze the results. In addition, the coupling between the ferromagnetic layers and the nonmagnetic layers is discussed in detail. The coupling depends on the band occupation of the nonmagnetic layers, while it is almost independent of the number of the nonmagnetic layers. The induced polarization in the nonmagnetic layers shows a long-range decreasing oscillatory behavior and it depends on the coupling between ferromagnetic and nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see: http://orion.physik.hu-berlin.d

    Specific saposin C deficiency: CNS impairment and acid β-glucosidase effects in the mouse

    Get PDF
    Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid β-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C−/−) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene. In C−/− mice, prosaposin and saposins A, B and D proteins were present at near wild-type levels, but the saposin C protein was absent. By 1 year, the C−/− mice exhibited weakness of the hind limbs and progressive ataxia. Decreased neuromotor activity and impaired hippocampal long-term potentiation were evident. Foamy storage cells were observed in dorsal root ganglion and there was progressive loss of cerebellar Purkinje cells and atrophy of cerebellar granule cells. Ultrastructural analyses revealed inclusions in axonal processes in the spinal cord, sciatic nerve and brain, but no excess of multivesicular bodies. Activated microglial cells and astrocytes were present in thalamus, brain stem, cerebellum and spinal cord, indicating regional pro-inflammatory responses. No storage cells were found in visceral organs of these mice. The absence of saposin C led to moderate increases in GC and lactosylceramide (LacCer) and their deacylated analogues. These results support the view that saposin C has multiple roles in glycosphingolipid (GSL) catabolism as well as a prominent function in CNS and axonal integrity independent of its role as an optimizer/stabilizer of GCase

    Neurological deficits and glycosphingolipid accumulation in saposin B deficient mice

    Get PDF
    Saposin B derives from the multi-functional precursor, prosaposin, and functions as an activity enhancer for several glycosphingolipid (GSL) hydrolases. Mutations in saposin B present in humans with phenotypes resembling metachromatic leukodystrophy. To gain insight into saposin B's physiological functions, a specific deficiency was created in mice by a knock-in mutation of an essential cysteine in exon 7 of the prosaposin locus. No saposin B protein was detected in the homozygotes (B−/−) mice, whereas prosaposin, and saposins A, C and D were at normal levels. B−/− mice exhibited slowly progressive neuromotor deterioration and minor head tremor by 15 months. Excess hydroxy and non-hydroxy fatty acid sulfatide levels were present in brain and kidney. Alcian blue positive (sulfatide) storage cells were found in the brain, spinal cord and kidney. Ultrastructural analyses showed lamellar inclusion material in the kidney, sciatic nerve, brain and spinal cord tissues. Lactosylceramide (LacCer) and globotriaosylceramide (TriCer) were increased in various tissues of B−/− mice supporting the in vivo role of saposin B in the degradation of these lipids. CD68 positive microglial cells and activated GFAP positive astrocytes showed a proinflammatory response in the brains of B−/− mice. These findings delineate the roles of saposin B for the in vivo degradation of several GSLs and its primary function in maintenance of CNS function. B−/− provide a useful model for understanding the contributions of this saposin to GSL metabolism and homeostasis

    Two-Body Correlations in Nuclear Systems

    Get PDF
    Correlations in the nuclear wave-function beyond the mean-field or Hartree-Fock approximation are very important to describe basic properties of nuclear structure. Various approaches to account for such correlations are described and compared to each other. This includes the hole-line expansion, the coupled cluster or ``exponential S'' approach, the self-consistent evaluation of Greens functions, variational approaches using correlated basis functions and recent developments employing quantum Monte-Carlo techniques. Details of these correlations are explored and their sensitivity to the underlying nucleon-nucleon interaction. Special attention is paid to the attempts to investigate these correlations in exclusive nucleon knock-out experiments induced by electron scattering. Another important issue of nuclear structure physics is the role of relativistic effects as contained in phenomenological mean field models. The sensitivity of various nuclear structure observables on these relativistic features are investigated. The report includes the discussion of nuclear matter as well as finite nuclei.Comment: Review, 104 pages including figure
    corecore